Трение

Трение

1 Введение


Тенденции развития современного общества, рыночная конкуренция ставят перед производителем очень сложную задачу: снижения стоимости эксплуатации изделий с учетом обеспечения максимальной безопасности. Основным направлением по улучшению качества изделий с учетом того, что от 80 до 90 % отказов машин, рабочего инструмента и механизмов происходит из-за износа узлов и деталей, становится создание безизносного узла трения. Данная задача решается двумя путями: внедрением более совершенных конструкционных решений и созданием новых смазочных материалов.

На сегодняшний день с учетом развития химии и химической технологии второй путь кажется наиболее перспективным, и необходимо отметить, что многообразие смазочных средств увеличилось по сравнению с 60 годами XX века на несколько порядков.

Одним из важнейших типов смазок являются твердые смазочные материалы: графит, дисульфид молибдена, нитрид бора, шунгит, диселенид молибдена. Так, графит и дисульфид молибдена используются либо в качестве твердого смазочного материала в чистом виде, либо в виде пластичных смазок, где система загущается мылами, или парафином, или церезином. Однако, несмотря на перспективность использования в качестве антифрикционной добавки к моторным маслам, а также маслам других назначений, они встречаются крайне редко и исключительно в составах зарубежных производителей.

Целью нашей работы являлось изучение физико-химических и трибологических свойств масел с антифрикционными добавками: графита и дисульфида молибдена, с последующим выводом о возможности их применении в различных узлах трения.


2 Обзор литературы

2.1 Трение, изнашивание и износ

В современной механике под трением понимают широкий круг явлений, вызываемых взаимодействием соприкасающихся поверхностей твердых тел при относительном перемещении, а также внутренним движением в твердых, жидких и газообразных средах при их деформации. Однако основные причины, вызывающие трение, в большинстве случаев связаны с поверхностью металла [1]. Поверхность любого твердого тела не бывает идеально ровной, даже самые гладкие металлические поверхности деталей, изготавливаемые с применением особо тонкого шлифования, либо полирования имеют неровности высотой от 0,05 до 0,1 мкм, а наиболее грубые, изготавливаемые фрезерованием от 100 до 200 мкм. Шероховатость и волнистость поверхностей, обусловленные погрешностью при изготовлении деталей, искажением их формы от нагрузки или нагрева, приводят к тому, что две поверхности контактируют на отдельных малых площадях. При относительном перемещении двух соприкасающихся поверхностей в плоскости дискретного касания возникает сопротивление, называемое внешним трением.

Различают следующие виды трения:

– По наличию относительного движения – трение покоя и трение движения;

– По характеру относительного движения – трение скольжения и трение качения;

– По наличию смазочного материала – трение жидкостное, при котором трущиеся поверхности полностью разделены слоем смазки; трение сухое, возникающее в отсутствие смазки между поверхностями; трение граничное, при котором трущиеся поверхности разделены тончайшим слоем смазки толщиной от 0,1 до 1 мкм и находятся под действием молекулярных сил этих поверхностей; трение смешанное, сочетающее условия сухого, граничного и жидкостного трения[2].

Изнашивание процесс отделения материала с поверхности твердого тела при трении и (или) накопления остаточной деформации, проявляющейся в постепенном изменении размеров и (или) формы тела. Установлено несколько видов изнашивания: механическое, коррозионно-механическое, абразивное, эрозионное, кавитационное, усталостное, изнашивание при заедании, окислительное и электроэрозионное изнашивание.

Износ – это результат изнашивания, определяемый в установленных единицах[3]. В общий износ механизмов свой вносят вклад все виды трения и изнашивания [4].


1.2 Механизм антифрикционного действия смазочных материалов

Антифрикционное действие – это действие материалов, направленное на уменьшение трения и износа.

Механизм действия смазочного материала заключается в разделении сопряженных поверхностей деталей, перемещающихся относительно друг друга, слоем смазки, толщина которой достаточна для уменьшения контакта микровыступов поверхностей. В зависимости от типа разделения поверхностей трения выделяют следующие виды смазывания:

– Гидродинамическая смазка – жидкостная смазка, при которой полное разделение поверхностей происходит в результате давления возникающего в слое жидкости при относительном движении этих поверхностей;

– Гидростатическая смазка – жидкостная смазка, при котором полное разделение поверхностей, находящихся в относительном движении или покое, осуществляется жидкостью, поступающей в зазор между этими поверхностями под внешним давлением;

– Газодинамическая смазка – газовая смазка, при которой полное разделение поверхностей трения, находящихся в относительном движении, определяются упругими свойствами материалов поверхностей трения и смазочного материала, а также реологическими свойствами последнего в зоне соприкосновения поверхностей;

– Граничная смазка – смазка, при которой трение определяется свойствами тонкого слоя компонентов жидкостного материала, обусловленными взаимодействиями материала поверхностей трения, смазочного материала и среды;

– Полужидкостная смазка – смазка, при которой жидкий смазочный материал, передающий нагрузку, частично разделяет поверхности трения деталей, находящихся в относительном движении.

Вне зависимости от типа разделения поверхностей, вида смазочного материала механизм антифрикционного действия, представляется как совокупность действия каждого компонента смазочного материала: масла, разнообразных присадок – веществ, добавляемых в незначительных количествах в масла для улучшения или придания новых свойств.    

Смазочное действие минерального масла с точки зрения гидродинамической и контактно-гидродинамической теорий смазки связано с его вязкостью, которая должна быть достаточно высокая, незначительно меняясь при измении нагрузки и температуры. Однако оно не обеспечивает эффективного смазочного действия, и уже при невысоких температурах от 20 до 40 оС на­блюдается значительный скачкообразный рост коэффициента трения, что свидетельствует о непосред­ственном металлическом контакте трущихся поверхностей [3]. Поэтому обычно минеральное масло не подвергают высокой степени очистки. В масле остаются технологические примеси: смолистые вещества и органические кислоты. Эти примеси называются поверхностно–активными присадками, по характеру их взаимодействия с поверхностью. Полярные группы этих веществ интенсивно притягиваются активными центрами на поверхности металла. При этом боковые группы соседних молекул также взаимодействуют друг с другом. На поверхности твердого тела образуется молекулярный "ворс". Мономолекулярный слой смазки служит как бы продолжением твердого тела, обладает прочностью и упругостью.


Рис. 1. Мономолекулярный слой ПАВ на поверхности твердого тела.


В реальных условиях обычно возникают не мономолекулярные, а мультимолекулярные ориентированные слои, в которых внутримолекулярное трение приобретает особый характер, заключающейся в том, что трение происходит между отдельными слоями молекул, а не между отдельными молекулами[1,3,4,9,10,17,18].

 Различными поверхностно-активными присадками могут быть различные мыла жирных и нафтеновых кислот, жирные амины, амиды и другие соли органических кислот. Введение таких веществ резко снижает коэффициент трения и сдвигает разру­шение граничных слоев в область более высоких температур от 140 до 270 оС.

В современных тяжело-нагруженных узлах трения: механизмы-рессоры, подвески тракторов и гусеничных машин, открытые шестереночные передачи, резьбовые соединения и др. – требуется химическое модифицирование поверхности с помощью химически активных присадок.

Вследствие фрикционного разогрева и влиянии силового поля твердой фазы молекулы вступают в химическое взаимодействие с металлом поверхности трения, образуя модифицированные слои, обладающие пониженным сопротивлением и поэтому заметно снижающие коэффициент трения. Разделяя поверхности трения не только слоем ПАВ, но и образовавшимся поверхностным соединением, эти слои предотвращают металлический контакт, и тем самым устраняют адгезионный износ и заедание.

При не высоких температурах до 200 оC химически активные присадки могут обеспечить снижение трения и износа благодаря адсорбционному эффекту, а при температурах превышающих температуру разложения присадки благодаря образованию химически модифицированных слоев.

Все этими свойствами обладают дисперсные системы нерастворимых в масле твердых смазочных материалов: MoS2, WS2, графита, BN, MoSe2, где концентрация добавки не превышает 10%.

1.3 Графит


Графит одна из самых распространенных сухих смазок. Является одной из аллотропных модификаций углерода, обладающей гексагональной кристаллической решеткой, в которой атомы углерода связанные вдоль линий шестиугольников ковалентными силами, а связь между кристаллическими плоскостями, осуществляется за счет слабых Ван-дер-ваальсовых взаимодействий, энергия которых от 3 до 4 порядков ниже, чем у ковалентных. Поэтому сдвиговая прочность графита в направлении, параллельном заполненным атомами углерода кристаллическим плоскостям, намного меньше, чем в направлениях, соответствующих разрыву ковалентных связей.


Рис. 2. Строение кристаллической решетки графита.


Эффект смазочного действия графита определяется тем, что молекулы воды, содержащейся в воздухе, сорбируются в межплоскостных промежутках и еще больше ослабляют межплоскостные связи. Поэтому смазочные свойства графита слабо проявляются в вакууме и при температуре более 100ºС. При отсутствии влаги коэффициент трения поверхностей, разделенных графитовой прослойкой, достигает 0,3, в то время как при наличии сорбированной влаги он составляет примерно 0,05. Это обстоятельство ограничивает использование графита. Однако графит хорошо заполняет технологические неровности микропрофиля поверхности трения, образуя гладкую зеркальную поверхность, поэтому в общем машиностроении нашел широкое применение для смазки сухих резьбовых соединений, канатов, поджимных сальниковых набивок, в качестве добавки в трансмиссионные масла и т.д.

По данным [Г.П.П]: Скорость относительного скольжения мало влияет на коэффициент трения графита, в то время как удельная нагрузка оказывает на него существенное воздействие. При увеличении удельной нагрузки до 450-500 Н/мм2 коэффициент трения быстро уменьшается (примерно до 0,03). При дальнейшем увеличении нагрузки коэффициент трения начинает возрастать, изнашивание становится более интенсивным. Большое значение имеет материал трущихся деталей. Большое значение имеет материал трущихся деталей, где особое значение имеет оксидная пленка, которая чем прочнее, тем лучше работает графит. Например, износ по меди в 18 раз больше, чем по хрому, что является одной из причин быстрого изнашивания щеток электродвигателей и генераторов.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать