Усилитель мощности системы поиска нелинейностей

Рисунок 1.4 – Нагрузочные прямые по постоянному и переменному току.

Расчет прямой по постоянному току производится по формуле:

                                                                                   (1.5)

Iк0=0:             Uкэ0=Еп=53.2 В,

Uкэ0=0:          Iк0= Еп/ Rк=53.2/25=2.1 А.

Расчет прямой по переменному току производится по формулам:

,                 ,

,                 

Найдем так же расчетную мощность цепи и мощность потребления:

                                                                    (1.6)

                                                       (1.7)

б) В цепи коллектора используется дроссель

Схема каскада приведена на рис.1.5.

Рисунок 1.5 – Схема оконечного каскада по постоянному току.

Рассчитаем энергетические параметры. Значения  не изменятся.

Эквивалентное нагрузочное сопротивление, возникшее в предыдущем пункте, здесь будет равно сопротивлению нагрузки, т.к.  заменил дроссель. Тогда выходной ток будет следующим:

ток в рабочей точке изменится:

Запишем значения тока и напряжения в рабочей точке:

Uкэ0=18В

Iк0 =0.7А.

Напряжение источника питания:

Еп=Uкэ0 =18В.

Видно, что напряжение питания значительно уменьшилось. Нагрузочные прямые по постоянному и переменному току приведены на рис. 1.6.

                                        I, А

                              1.4                                  R_

                                         R~  



                              0.7



                                                                18                             34          U, В

Рисунок 1.6 – Нагрузочные прямые по постоянному и переменному току.

Расчет прямой по постоянному току:

Расчет прямой по переменному току:

,        ,

,       .

Найдем так же расчетную мощность цепи и мощность потребления:

Сведем результаты расчетов в отдельную таблицу и проведем сравнительный анализ двух схем.

Таблица 1.1 - Сравнительный анализ схем

Параметр

Схема с

53.2 В

25.4 Вт

74.9 Вт

1.4 А

18 В

Схема без

18 В

12.6 Вт

12.6 Вт

0.7 А

18 В

Из таблицы следует, что дроссельный каскад потребляет в несколько раз меньше, напряжение источника питания для него нужно небольшое, что выгодно отличает данную схему. В дальнейших расчетах она и будет использоваться.

Выбор транзистора осуществляется исходя из технического задания, по которому можно определить предельные электрические и частотные параметры требуемого транзистора. В данном случае они составляют (с учетом запаса 20%):[6]

Iк доп  > 1.2*Iк0=0.84 А

Uк доп > 1.2*Uкэ0=21.6 В                                                                       (1.8)

Рк доп > 1.2*Pрасс=15.2 Вт

fт= (3-10)*fв=(3-10)*250 МГц.

Этим требованиям с достаточным запасом отвечает широко распространенный транзистор КТ 934В, справочные данные которого приведены ниже [7]:

Iк=2 А

Uкэ=60 В

Pк=30 Вт

Fт= 960 МГц.

 при

1.3.3. Расчет эквивалентных схем транзистора КТ934В.

 
 


а) Модель Джиаколетто.

Модель Джиаколетто представлена на рис.1.7.









Рисунок 1.7 - Эквивалентная схема Джиаколетто.


Необходимые для расчета справочные данные:

, постоянная цепи обратной связи.

, статический коэффициент передачи тока базы.

, емкость коллекторного перехода.

Найдем при помощи постоянной времени цепи обратной связи сопротивление базового перехода нашего транзистора:[5]

                                                                                                (1.9)

Из справочных данных мы знаем, что при  , а  на 18В. Для того, чтобы свести параметры к одной системе воспользуемся формулой перехода:[1]

                                                                   (1.10)

в нашем случае:

Теперь, зная все параметры, можно найти сопротивление:

, тогда

Найдем значение коллекторной емкости в рабочей точке по той же формуле перехода:

Найдем значения оставшихся элементов схемы:

, где                                (1.11)

 – паспортное значение статического коэффициента передачи,

 – сопротивление эмиттеного перехода транзистора

Тогда

Емкость эмиттерного перехода: , где  – типовое значение граничной частоты коэффициента передачи тока, взятое из паспортных данных транзистора.[7]

Найдем оставшиеся параметры схемы:

                                                                                            (1.12)

                                                                                            (1.13)

                                                                                      (1.14)

б) Однонаправленная модель.[4]

Однонаправленная модель представлена на рис.1.8.

Рисунок 1.8 - Однонаправленная модель.


При определении значений элементов высокочастотной модели воспользуемся паспортными данными транзистора:[7]

                                                                                  (1.15)

где  – входное сопротивление,  – выходная емкость,  – выходное сопротивление.В паспортных данных значение индуктивности.[7]

где  – индуктивности выводов базы и эмиттера.

В результате получим:

1.3.4. Расчет схем термостабилизации транзистора КТ 934В.


Эмиттерная термостабилизация приведена на рис.1.9.[8]

Рисунок 1.9 Схема эмитерной термостабилизации.


Расчет номиналов элементов осуществляется исходя из заданной рабочей точки. Напряжение на эмиттере должно быть не менее 3-5 В (в расчетах возьмем 3В), чтобы стабилизация была эффективной.

Рабочая точка:

Uкэ0= 18В,

Iк0=0.7А.

Учтя это, получим:

, где , а коллекторный ток – , что было получено ранее, тогда:  и                                                               1.16)

Видно, что рассеиваемая мощность довольно велика.

Базовый ток будет в  раз меньше коллекторного тока:

,                                                                          (1.17)

а ток базового делителя на порядок больше базового:

                                                                               (1.18)

Учтя то, что напряжение питания будет следующим:

,                                                                  (1.19)

найдем значения сопротивлений, составляющих базовый делитель:

                                 (1.20)

                                                            (1.21)

Схема активной коллекторной термостабилизации усилительного каскада приведена на рис.1.10.

Рисунок 1.10 – Схема активной коллекторной термостабилизации.


В качестве управляемого активного сопротивления выбран транзистор КТ361А со средним коэффициентом передачи тока базы 50.[9] Напряжение на

 сопротивлении цепи коллектора по постоянному току должно быть больше 1 В или равным ему, что и применяется в данной схеме [4].

Энергетический расчет схемы:

.                                        (1.22)

Мощность, рассеиваемая на сопротивлении коллектора:

  .                                                               (1.23)

Видно, что мощность рассеивания на отдельном резисторе уменьшилась в три раза по сравнению с предыдущей схемой. Рассчитаем номиналы схемы:

                                          (1.24)

Номиналы реактивных элементов выбираются исходя из неравенств:

                                                                                            (1.25)

Этим требованиям удовлетворяют следующие номиналы:

L=30 мкГн (Rн=25 Ом) и Сбл=0.1 мкФ  (fн=10 МГц).

Схема пассивной коллекторной термостабилизации приведена на рис. 1.11[8]


 
 










Рисунок 1.11 – Схема пассивной коллекторной термостабилизации.


В данной схеме напряжение на коллекторе должно изменяться в пределах от 5 до 10 В. Возьмем среднее значение– 7В.

Произведем энергетический расчет схемы:

.                                                                (1.26)

Мощность, рассеиваемая на сопротивлении коллектора:

.                                                                  (1.27)

Видно, что при использовании данной схемы мощность будет максимальна.

Рассчитаем номиналы схемы:

.                                                   (1.28)

Сравнив эти схемы видно, что и с энергетической, и с практической точки зрения  более эффективно использовать активную коллекторную термостабилизацию, которая и будет использоваться далее.

1.3.5. Расчет выходной корректирующей цепи.


В рассматриваемом выше усилительном каскаде расширение полосы пропускания было связано по принципу последовательного соединения корректирующих цепей (КЦ) и усилительных элементов [10].

Пример построения такой схемы усилителя по переменному току приведен на рисунке 1.12.

Рисунок 1.12 Схема усилителя с корректирующими цепями


При этом расчеты входных, выходных и межкаскадных КЦ ведутся с использованием эквивалентной схемы замещения транзистора приведенной на рисунке 1.8. Из теории усилителей известно [11], что для получения максимальной выходной мощности в заданной полосе частот необходимо реализовать ощущаемое сопротивление нагрузки, для внутреннего генератора транзистора, равное постоянной величине во всем рабочем диапазоне частот. Это можно реализовать, включив выходную емкость транзистора (см. рисунок 1.8) в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рисунке 1.13.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать