Усилитель приемного блока широкополосного локатора

4.                      Ёмкость коллекторного перехода при  В пФ;

5.                      Индуктивность вывода базы нГн;

6.                      Индуктивность вывода эмиттера нГн.

Предельные эксплуатационные данные:

1.                      Постоянное напряжение коллектор-эмиттер В;

2.                      Постоянный ток коллектора мА;

        3.          Постоянная рассеиваемая мощность коллектора  Вт;

        

2.2.2 Расчёт эквивалентных схем замещения транзистора.



2.2.2.1Расчёт параметров схемы Джиаколетто.

 Рисунок 2.2.2.1.1- Эквивалентная схема биполярного

                                 транзистора (схема Джиаколетто).

Найдём параметры всех элементов схемы:[2]

Пересчитаем ёмкость коллектора из паспортной:   Ск(треб)=Ск(пасп)*=1,6×=2,92 (пФ)

Найдём gб=, причём  rб= :

rб= =2,875 (Ом); gб==0,347 (Cм);

Для нахождения rэ воспользуемся формулой rэ=, где Iк0 в мА:

 rэ= =1,043 (Ом);

Найдём оставшиеся элементы схемы

gбэ==0,017,где ß0=55 по справочнику;

Cэ==30,5 (пФ),где =5000Мгц по справочнику;

Ri= =100 (Ом), gi=0.01(См),где Uкэ(доп)=20В Iко(доп)=200мА.


    2.2.2.2Расчёт однонаправленной модели транзистора.


Данная модель применяется в области высоких частот.

Рисунок 2.2.2.2.1- Однонаправленная модель транзистора.

Параметры эквивалентной схемы расчитываются по приведённым ниже формулам.[2]

Входная индуктивность:

,                                                                                  (2.2.2.1)

где –индуктивности выводов базы и эмиттера.

Входное сопротивление:

,                                                                                         (2.2.2.2)

где , причём , и  – справочные данные.

Выходное сопротивление:

.                                                                                  (2.2.2.3)

Выходная ёмкость:

.                                                        (2.2.2.4)

В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

Lвх= Lб+Lэ=1+0,183=1,183 (нГн);

Rвх=rб=2,875 (Ом);

Rвых=Ri=100 (Ом);

Свых=Ск(треб)=2,92 (пФ);

fmax=fт=5 (ГГц)


2.2.3 Расчёт и выбор схемы термостабилизации.


2.2.3.1 Эмитерная термостабилизация.


   Эмитерная термостабилизация широко используется в маломощных каскадах, так как потери мощности в ней при этом не значительны и её простота исполнения вполне их компенсирует, а также она хорошо стабилизирует ток коллектора в широком диапазоне температур при напряжении на эмиттере более 3В.[1]

Рисунок 2.2.3.1.1- Каскад с эмитерной термостабилизацией.


Рассчитаем параметры элементов данной схемы.

Uэ=4 (В);

Eп=Uкэ0+Uэ=7 (В);

Rэ= ==90,91 (Ом);

Rб1=, Iд=10×Iб, Iб=, Iд=10× =10×=0,008 (А);

Rб1==264,1 (Ом);

Rб2= =534,1 (Ом).

Наряду с эмитерной термостабилизацией используются пассивная и активная коллекторная термостабилизации.[1]


2.2.3.2Пассивная коллекторная термостабилизация:


Ток базы определяется Rб. При увеличении тока коллектора напряжение в точке А падает и следовательно уменьшается ток базы, а это не даёт увеличиваться дальше току коллектора. Но чтобы стал изменяться ток базы, напряжение в точке А должно измениться на 10-20%, то есть Rк должно быть очень велико, что оправдывается только в маломощных каскадах[1].


Рисунок 2.2.3.2.1- Схема пассивной коллекторной термостабилизации

Rк==159.1(Ом);

URк=7 (В);

Eп=Uкэ0+URк=10 (В);

Iб==0.0008(А);

Rб= =2875 (Ом).


    2.2.3.3 Активная коллекторная термостабилизация.


Можно сделать чтобы Rб зависило от напряжения в точке А см. рис.(2.2.3.2.1). Получим что при незначительном уменьшении (увеличении) тока коллектора значительно увеличится (уменьшится) ток базы. И вместо большого Rк можно поставить меньшее на котором бы падало порядка 1В см. рис.(2.2.3.3.1).[1]

b2=100;

Rк===22,73 (Ом);

Eп=Uкэ0+UR=4 (В); 

Iд2=10×Iб2=10×=0.00008 (A);

R3==28,75 (кОм);

R1==21,25 (кОм);

R2==4.75 (кОм).


Рисунок 2.2.3.3.1- Активная коллекторная термостабилизация.


      Данная схема требует значительное количество дополнительных элементов, в том числе и активных. Если Сф утратит свои свойства, то каскад самовозбудится и будет не усиливать, а генерировать.Основываясь на проведённом выше анализе схем термостабилизации выберем эмитерную.


                   3 Расчёт входного каскада по постоянному току


3.1 Выбор рабочей точки


При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 2.2.1 с учётом того, что  заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов  мА и В). Поэтому координаты рабочей точки выберем следующие мА, В. Мощность, рассеиваемая на коллекторе мВт.


3.2 Выбор транзистора


Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 2.2.1. Этим требованиям отвечает транзистор КТ3115А-2. Его основные технические характеристики приведены ниже.

Электрические параметры:

1.        граничная частота коэффициента передачи тока в схеме с ОЭ ГГц;

2.        Постоянная времени цепи обратной связи пс;

3.        Статический коэффициент передачи тока в схеме с ОЭ ;

4.        Ёмкость коллекторного перехода при  В пФ;

5.        Индуктивность вывода базы нГн;

6.        Индуктивность вывода эмиттера нГн.

7.        Ёмкость эмиттерного перехода  пФ;

Предельные эксплуатационные данные:

1.        Постоянное напряжение коллектор-эмиттер В;

2.        Постоянный ток коллектора мА;

3.        Постоянная рассеиваемая мощность коллектора  Вт;


3.3 Расчёт эквивалентной схемы транзистора


Эквивалентная схема имеет тот же вид, что и схема представленная на рисунке 2.2.2.2.1 Расчёт её элементов производится по формулам, приведённым в пункте     2.2.2.1

нГн;

пФ;

Ом

Ом;

Ом;

пФ.


3.3 Расчёт цепи термостабилизации


Для входного каскада также выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.3.1.


Рисунок 3.3.1


Метод расчёта схемы идентичен приведённому в пункте     2.2.3.1 с той лишь особенностью что присутствует, как видно из рисунка, сопротивление в цепи коллектора . Эта схема термостабильна при В и  мА. Напряжение питания рассчитывается по формуле В.

Расчитывая элементы получим:

Ом;

кОм;

кОм;


    4.1 Расчет полосы пропускания выходного каскада


    Поскольку мы будем использовать комбинированные обратные [1], то все соответствующие элементы схемы будут одинаковы, т.е. по сути дела расчёт всего усилителя сводится к расчёту одного каскада.

Рисунок 2.3.1 - Схема каскада с комбинированной ООС

Достоинством схемы является то, что при условиях

 и                                                                  (4.1.1)

схема оказывается согласованной по входу и выходу с КСВН не более 1,3 в диапазоне частот, где выполняется условие ³0,7. Поэтому практически отсутствует взаимное влияние каскадов друг на друга при их каскадировании [6].

При выполнении условия (1.53), коэффициент усиления каскада в области верхних частот описывается выражением:

,                                             (4.1.2)

где ;                                                                                   (4.1.3)

;

.

Из (2.3.1), (2.3.3) не трудно получить, что при заданном значении

.                                           (4.1.4)

При заданном значении ,  каскада равна:

,                       (4.1.5)

где .

Нагружающие ООС уменьшают максимальную амплитуду выходного сигнала  каскада, в котором они используются на величину

.

При выборе  и  из (4.1.3), ощущаемое сопротивление нагрузки транзистора каскада с комбинированной ООС равно .

Расчёт Kо:


Для реализации усилителя используем четыре каскада. В этом случае коэффициент усиления на один каскад будет составлять:

Ко==4.5дБ или 1.6 раза

 (Ом);

Rэ= (Ом);

;

;

Общий уровень частотных искажений равен 3 дБ, то Yв для одного каскада примем равным:

;

;


Подставляя все данные в (4.1.5) находим fв:


Рисунок 4.1.1- Усилитель приёмного блока широкополосного локатора  на четырёх каскадах.


    4.2. Расчёт полосы пропускания входного каскада


Все расчёты ведутся таким же образом, как и в пункте 4.1 с той лишь разницей что берутся данные для транзистора КТ3115А-2.Этот транзистор является маломощным,

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать