220-280 °С - 246
280-350 °С -312
низа - 342
Давление, МПа - 0,25
Кратность острого орошения, кг/кг 1,4:1
Характеристика ректификационных колонн
Диаметр, м Число тарелок[2]
Колонна частичного 5 24
отбензинивания нефти, в т.ч.
концентрационная часть 12
отгонная часть 10
Атмосферная колонна
верхняя часть 5 15
средняя часть 7 23
нижняя часть 7 5
Отгонные колонны 2 по 10
Практикой эксплуатации промышленных установок AT и АВТ были выявлены следующие недостатки схемы 1:
- не обеспечиваются проектные показатели по температуре подогрева нефти на входе в К-1, тем самым и по отбору легкого бензина в ней;
- способ регулирования температуры низа К-1 посредством горячей струи через печь требует повышенных энергозатрат на циркуляцию отбензиненной нефти.
Для интенсификации работы К-1 на ряде НПЗ были переобвязаны теплообменники по сырью и теплоносителю с целью повышения температуры подогрева нефти на входе в К-1. На одном НПЗ[3] внедрена энергосберегающая технология отбензинивания нефти которая отличается от схемы 1 тем, что часть поступающей в К-1 исходной обессоленной нефти нагревается в конвекционной камере печи (атмосферной или вакуумной) до 180°С (вместо 205°С) и подается вторым потоком в секцию питания, а в низ К-1 в качестве испаряющего агента подается водяной пар (≈0,7% мас.).
3. Блок вакуумной перегонки мазута установки ЭЛОУ – АВТ – 6
Основное назначение установки (блока) вакуумной перегонки мазута топливного профиля - получение вакуумного газойля широкого фракционного состава (350 - 500 °С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях - термического крекинга с получением дистиллятного крекинг - остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов.
О четкости разделения мазута обычно судят по фракционному составу и цвету вакуумного газойля. Последний показатель косвенно характеризует содержание смолисто-асфальтеновых веществ, то есть коксуемость и содержание металлов. Металлы, особенно никель и ванадий, оказывают отрицательное влияние на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Поэтому при эксплуатации промышленных установок ВТ исключительно важно уменьшить унос жидкости (гудрона) в концентрационную секцию вакуумной колонны в виде брызг, пены, тумана и т.д. В этой связи вакуумные колонны по топливному варианту имеют при небольшом числе тарелок (или невысоком слое насадки) развитую питательную секцию: отбойники из сеток и промывные тарелки, где организуется рециркуляция затемненного продукта. Для предотвращения попадания металлоорганических соединений в вакуумный газойль иногда вводят в сырье в небольших количествах антипенную присадку типа силоксан.
В процессах вакуумной перегонки, помимо проблемы уноса жидкости усиленное внимание уделяется обеспечению благоприятных условий для максимального отбора целевого продукта без заметного его разложения. Многолетним опытом эксплуатации промышленных установок ВТ установлено, что нагрев мазута в печи выше 420-425°С вызывает интенсивное образование газов разложения, закоксовывание и прогар труб печи, осмоление вакуумного газойля. При этом, чем тяжелее нефть, тем более интенсивно идет газообразование и термодеструкция высокомолекулярных соединений сырья. Вследствие этого при нагреве мазута до максимально допустимой температуры уменьшают время его пребывания в печи, устраивая многопоточные змеевики (до четырех), применяют печи двустороннего облучения, в змеевик печи подают водяной пар и уменьшают длину трансферного трубопровода (между печью и вакуумной колонной). Для снижения температуры низа колонны организуют рецикл (квенчинг) частично охлажденного гудрона. С целью снижения давления на участке испарения печи концевые змеевики выполняют из труб большего диаметра и уменьшают перепад высоты между вводом мазута в колонну и выходом его из печи. В вакуумной колонне применяют ограниченное количество тарелок с низким гидравлическим сопротивлением или насадку; используют вакуумсоздающие системы, обеспечивающие достаточно глубокий вакуум. Количество тарелок в отгонной секции также должно быть ограничено, чтобы обеспечить малое время пребывания нагретого гудрона. С этой целью одновременно уменьшают диаметр куба колонн.
В процессах вакуумной перегонки мазута по топливному варианту преимущественно используют схему однократного испарения, применяя одну сложную ректификационную колонну с выводом дистиллятных фракций через отпарные колонны или без них. При использовании отпарных колонн по высоте основной вакуумной колонны организуют несколько циркуляционных орошений.
Принципиальная схема блока вакуумной перегонки мазута установки ЭЛОУ-АВТ-6 приведена на рисунке 2.
Мазут, отбираемый с низа атмосферной колонны блока AT (см. рис.1), прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных и водяных паров, газы разложения (и воздух, засасываемый через неплотности) с верха вакуумной колонны поступают в вакуумсоздающую систему. После кон и охлаждения в конденсаторе-холодильнике она разделяется в газосепараторе на газовую и жидкую фазы. Газы отсасываются трехступенчатым пароэжекторным вакуумным насосом, а конденсаты поступают в отстойник для отделения нефтепродукта от водного конденсата. Верхним боковым погоном вакуумной колонны отбирают фракцию легкого вакуумного газойля (соляр). Часть его после охлаждения в теплообменниках возвращается наверх колонны в качестве верхнего циркуляционного орошения.
Вторым боковым погоном отбирают широкую газойлевую (масляную) фракцию. Часть ее после охлаждения используется как среднее циркуляционное орошение вакуумной колонны. Балансовое количество целевого продукта вакуумного газойля после теплообменников и холодильников выводится с установки и направляется на дальнейшую переработку.
С нижней тарелки концентрационной части колонны выводиться затемненная фракция, часть которой используется как нижнее циркуляционное орошение, часть - может выводиться с установки или использоваться как рецикл вместе с загрузкой вакуумной печи.
С низа вакуумной колонны отбирается гудрон и после охлаждения в теплообменнике возвращается в низ колонны в качестве квенчинга. В низ вакуумной колонны и змеевик печи подается водяной пар.
Материальный баланс блока вакуумной перегонки
Поступило, % на нефть
Мазут -52
Получено. % на нефть
Легкий вакуумный газойль -1,2
Вакуумный газойль - 22,0
Гудрон - 28,8
Технологический режим в вакуумной колонне
Температура,°С
питания - 395
верха - 125
низа - 352
вывода:
легкого вакуумного газойля -195
широкого вакуумного газойля - 260
затемненной фракции - 300
Давление наверху (абс), кПа - 8,0
Характеристика вакуумной колонны
Диаметр, м Число тарелок[4]
Верхняя часть 6,4 4
Средняя часть 9,0 10
Нижняя часть 4,5 4
4. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ – АВТ – 6
Во фракциях легкого и тяжелого бензинов, отбираемых с верха соответственно отбензинивающей и атмосферной колонн (см. рис. 1), содержатся растворенные углеводородные газы (С1 -С4). Поэтому прямогонные бензины должны подвергаться вначале стабилизации с выделением сухого (С1-С2) и сжиженного (С2-С4) газов и последующим их рациональным использованием.
Прямогонные бензины после предварительной стабилизации не могут быть использованы непосредственно как автомобильные бензины ввиду их низкой детонационной стойкости. Для регулирования пусковых свойств и упругости паров, товарных автобензинов обычно используется только головная фракция бензина н.к. - 62 (85°С), которая обладает к тому же достаточно высокой детонационной стойкостью.
Для последующей переработки стабилизированные бензины подвергаются вторичной перегонке на фракции, направляемые как сырье процессов каталитического риформинга с целью получения высокооктанового компонента автобензинов или индивидуальных ароматических углеводородов — бензола, толуола и ксилолов. При производстве ароматических углеводородов исходный бензин разделяют на следующие фракции с температурными пределами выкипания: 62 -85 °С (бензольную), 85-105 (120°С) (толуольную) и 105 (120)-140°С (ксилольную). При топливном направлении переработки прямогонные бензины достаточно разделить на 2 фракции: н.к.-85°С и 85-180°С.
Для стабилизации и вторичной перегонки прямогонных бензинов с получением сырья каталитического риформинга топливного направления применяют в основном двухколонные схемы, включающие колонну стабилизации и колонну вторичной перегонки бензина на фракции н.к. - 85 и 85 - 180°С. Как наиболее экономически выгодной схемой разделения стабилизированного бензина на узкие ароматикообразующие фракции признана последовательно-параллельная схема соединения колонн вторичной перегонки, как это принято в блоке стабилизации и вторичной перегонки установки ЭЛОУ-АВТ - 6 на рисунке 3. В соответствии с этой схемой прямогонный бензин после стабилизации разделяется сначала на 2 промежуточные фракции (н.к. - 105°С и 105-180°С), каждая из которых затем направляется на последующее разделение на узкие целевые фракции.
Как видно из рисунке 3, нестабильный бензин из блока AT после нагрева в теплообменнике поступает в колонну стабилизации (дебутанизатор) 1. С верха этой колонны отбирают сжиженные газы С2-С4, которые проходят конденсатор-холодильник и поступают в газосепаратор. Часть конденсата возвращается в колонну 1 в качестве острого орошения, а балансовое количество выводится с установки. Подвод тепла в низ дебутанизатора осуществляется горячей струей подогретого в печи стабильного бензина. Из стабильного (дебетированного) бензина в колонне 2 отбирают фракцию С5-105°С. Пары этой фракции конденсируют в аппарате воздушного охлаждения. Часть конденсата возвращают в колонну 2 в качестве острого орошения, а балансовую часть направляют в колонну 3. Кроме того, часть паров верха колонны 2 подают без конденсации в колонну 3. С верха колонны 3 отбирают фракцию С5- 62°С, с куба - 62-1050С. которая может выводиться с установки как целевая направляться в колонну 4 для разделения на фракции 62-85°С (бензольную) и 85-105°С (толуольную).