Виды цементов

5.Шлакопортландцемент


Доменные шлаки для изготовления различного рода строительных материалов используются у нас больше 100 лет. В 1865 г., вскоре после того, как стали применять грануляцию шлаков водой и были выявлены их гидравлические свойства, возникло производство стеновых камней из смеси извести и шлака. В 90-х годах прошлого столетия в нынешном Днепропетровске и Кривом Роге построили набивным способом первые крупные здания из шлакобетона. Позже, в 1913—1914 гг., в Днепропетровске был выстроен первый завод шлакопортландцемента. Примерно в то же время производство его было организовано на Косогорском металлургическом заводе в Туле. В настоящее время объем производства шлакопортландцемента у нас в стране достигает около 30% общего выпуска цемента.

Шлакопортландцемент является гидравлическим вяжущим веществом, получаемым путем совместного тонкого измельчения клинкера и высушенного гранулированного доменного шлака с обычной добавкой гипса; шлакопортландцемент можно изготовить тщательным смешиванием тех же материалов, измельченных раздельно.

По ГОСТ доменного шлака в этом цементе должно быть не меньше 21% и не больше 60% массы цемента; часть шлака можно заменить активной мине ральной добавкой (трепелом) (не более 10% массы цемента),, что способствует улучшению технических свойств вяжущего. В шлакопортландцементе, предназначаемом для применения в массивных гидротехнических сооружениях, предельное содержание шлака не регламентируется и устанавливается по соглашению сторон. Разновидностями шлакопортландцемента являются нормальный быстротвердеющий и сульфатостойкий. Технология производства шлакопортландцемента отличается тем, что гранулированный доменный шлак подвергается сушке при температурах, исключающих возможность его рекристаллизации, и в высушенном виде подается в цементные мельницы. При помоле шлакопортландцемента производительность многокамерных трубных мельниц понижается, что объясняется, по-видимому, низкой средней плотностью шлака, ограничивающей возможность достаточного заполнения по массе объема мельниц. Иные результаты получаются при применении кислых шлаков как мокрой, так и в особенности полусухой грануляции. При совместном помоле с клинкером эти шлаки, хотя они и в значительной степени остеклованы, не сосредотачиваются в тончайших фракциях цементного порошка. Наличие крупных зерен шлака в составе шлакопортландцемента несколько замедляет процесс твердения.

Для получения каждого компонента с наиболее приемлемой для него тонкостью помола следует размалывать клинкер и шлак раздельно. В зависимости от сравнительной сопротивляемости клинкера и шлака измельчению принимают две схемы помола. По первой клинкер предварительно измельчают сначала в первой мельнице, а затем уже во второй совместно со шлаком. Такая схема рекомендована Южгипроцементом для получения быстротвердеющего шлакопортландцемента. Она рациональна при более низкой размалываемости шлака, чем клинкера. В этом случае достигается особо тонкий помол клинкера, что ускоряет твердение шлакопортландцемента.

Вторая схема предусматривает обычный совместный помол шлака и клинкера при примерно одинаковой их размалываемости. В этом случае измалываемые компоненты еще дополнительно истирают друг друга. Высокая тонкость помола — развитая удельная поверхность — особенно важна для клинкерной части цемента. При этом также проявляется физико-химическая потенциальная активность шлака. Увеличение удельной поверхности шлакопортландцемента до 3200—3000 см2/г позволяет повысить его прочность примерно до прочности чистого портландцемента с удельной поверхностью — 3000 см2/г.

Клинкер для шлакопортландцемента должен иметь такой минералогический состав и структуру, чтобы были обеспечены твердение и высокая прочность «клинкерной части» в составе шлакопортландцемента. Целесообразно, чтобы по физико-химической характеристике он приближался бы к клинкерам высокопрочных быстротвердеющих портлапдцементов. Гипс ускоряет схватывание шлакопортландцемента, однако дозировку его нужно устанавливать экспериментально. Содержание шлака и других активных добавок в составе цемента составило в 1980 г. в среднем по промышленности 21,7%. Наиболее быстрое твердение происходит при 30—40%) шлака. По ГОСТ к шлакопортландцементу предъявляются такие же требования по тонкости помола, срокам схватывания, равномерности изменения объема, содержанию S03 и MgO в клинкере как и к портландцементу. По прочностным показателям он разделяется на марки 300, 400 и 500. Отличительной его особенностью является повышенная прочность на растяжение и изгиб. В отличие от пуццолановых портландцементов шлакопортландцемент не вызывает повышения водопотребности растворов и бетонных смесей. При несколько замедленном росте прочности в первый после затворения период он интенсивно наращивает ее в последующем. За срок от семи суток до одного года прочность у портландцемента увеличивается примерно вдвое, а у шлакопортландцемента— в нормальных температурно-влажностных условиях возрастает значительно больше — примерно в 2,5 раза.

Твердение шлакопортландцемента обусловливается более сложными процессами, чем портландцемента из-за шлака. Происходит гидратация клинкерной части цемента, в результате чего в твердеющей системе образуется насыщенный известковый раствор, который образуется также и при разложении сернистого кальция.

Весьма важна концентрация в растворе как ионов Са2+, так и гидроксильных ОН-; существенная роль последних заметна по интенсивной гидратации шлака при воздействии щелочных растворов натрия или калия; в растворе имеется также некоторое количество ионов S04.

В результате создается среда, способная вызвать щелочное и сульфатное возбуждение зерен шлака, поверхностные слои которых вовлекаются в результате этого в процессы гидратации и образования цементирующих соединений. Контактируя в полостях и микротрещинах с поверхностными слоями шлакового стекла, известковый раствор способствует переводу в раствор находящихся на поверхности шлаковых зерен катионов вследствие разрыва кремнекислородных связей. В результате при взаимодействии с известью образуются гидросиликаты кальция, вначале более основные, а по мере снижения концентрации извести в реагирующей среде — уже низкоосновные серии CSH (В).

Исследования процессов твердения известковошлаковых смесей и шлакопорт-ландцементов показали, что происходит химическое связывание шлаком СаО.

В процессе твердения шлакопортландцемента образуется гидросульфоалюминат кальция; после израсходования всего гипса при достаточно высокой концентрации извести возможно образование гидроалюминатов кальция. Не исключена возможность появления гидрогеленита — C2ASH8.

Шлакопортландцемент в отличие от портландцемента не проявляет тенденции к снижению прочности при твердении в результате обычно возникающих внутренних напряжений. Количество связанной воды при твердении шлакопортландцемента зависит преимущественно от активности и соответствует степени гидратации клинкерной части шлакопортландцемента в особенности при кислых шлаках. Содержание шлака в шлакопортландцементе уменьшает контракцию, причем через сутки это уменьшение пропорционально содержанию шлака в цементе. При одинаковом соотношении шлака и клинкера контракция к 30 суткам больше у шлакопортландцемента на основных шлаках. Контракция шлакопортландцемента на кислых шлаках зависит, главным образом, от химико-минералогического состава клинкера.

Усадочные деформации у шлакопортландцемента в растворе 1:3 с нормальным песком к 4 месяцам твердения на воздухе достигают 0,6—0,76 мм/м при содержании в цементе 50% кислых доменных шлаков либо 70% основных доменных шлаков. У взятого для сравнения пуццоланового портландцемента усадка составила 1,15 мм/м. Причина усадки в условиях воздушного твердения — в основном удаление свободной воды; у шлакопортландцементов с небольшой добавкой шлака, ниже 50%, усадка зависит преимущественно от минералогического состава клинкера.

Тепловыделение при гидратации шлакопортландцемента значительно ниже, чем у портландцемента. Это препятствует его использованию в зимних условиях, но положительно сказывается при изготовлении массивного бетона. Для нормального твердения шлакопортландцемента необходима температура не ниже 288 К, при более низких бетонную смесь необходимо подогревать.

Исследовалась стойкость шлакопортландцементов с кислыми и основными шлаками по отношению к выщелачиванию методом фильтрации дистиллированной воды. Опыты показали, что введение в цементы как кислых, так и основных шлаков повышает их стойкость по отношению к действию мягкой воды. Это характеризуется уменьшением абсолютного количества выщелоченной из шлакопортландцемента извести, а также меньшей потерей прочности по сравнению с портландцементом и пуццолановым портландцементом. Твердые зерна шлака, довольно медленно гидратирующиеся, создают дополнительный жесткий каркас, который сохраняется и после выщелачивания части извести из клинкерной составляющей шлакопортландцемента. Шлакопортландцемепты обладают достаточной морозостойкостью, которую можно повысить путем введения поверхностно-активных воздухововлекающих и других добавок, уменьшения В/Ц и созданием условий для предварительного твердения примерно до 3 мес до начала морозов. Последнее особенно важно для шлакопортландцементов на базе кислых шлаков, содержащих больше «слабо связанной» воды и вследствие этого менее морозостойких, чем шлакопортландцементы на основных шлаках. Сравнительно высока морозостойкость цемента при содержании 60—80% шлака. Для водонепроницаемости существенное значение имеет как вид использованного для получения цемента шлака, так и его дисперсность. Из шлакопортландцемента можно получить водонепроницаемые бетоны при высокой удельной поверхности цемента, а также при добавке 10% другой активной минеральной добавки. Для повышения активности шлакопортландцементов применяется мокрый помол шлаков и последующее смешение шлакового шлама в бетономешалке с портландцементом. Такой метод был применен на строительстве плотины во Франции и дал весьма положительные результаты. Было установлено, что выделение тепла при твердении шлакопортландцемента понизилось, что особенно ценно для массивного бетона.

Положительной особенностью шлакопортландцементов, в отличие от пуццолановых, является сравнительная воздухостойкость, обеспечивающая нормальное твердение бетона (железобетона) наземных сооружений. Это не исключает необходимости тщательного ухода за бетоном для защиты его от высыхания и пониженных температур в первые сроки твердения. Шлакопортландцемент обладает повышенной стойкостью против действия минерализованных вод (морской, сульфатной и др.). Однако по отношению к концентрированным растворам магнезиальных солей он недостаточно стоек. Свободные кислоты, содержащиеся в болотных, сточных промышленных и других водах разрушают бетон из шлакопортландцемента.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать