Хроматографическое разделение углеводов

Термины и определения

СОРБЕНТ — твердое вещество, жидкость или их смеси, способные поглощать или удерживать газы, пары или растворенные вещества и используемые в хроматографии в качестве неподвижной фазы.

АДСОРБЕНТ — твердый сорбент, концентрирующий на своей поверхности газы, пары или растворенные вещества. Адсорбентом заполнена хроматографическая колонка, в которой, в свою очередь, происходит разделение смеси веществ на отдельные компоненты.

СОРБАТ — компонент анализируемой смеси, внесенной в хроматографическую колонку.

ЭЛЮЕНТ — растворитель или смесь растворителей, предназначенная для прокачки анализируемой смеси через хроматографическую колонку (подвижная фаза).

ЭЛЮАТ — раствор, выходящий из хроматографической колонки.

ХРОМАТОГРАММА — графический результат хроматографического процесса. Хроматограммой (с точки зрения аппаратурного оформления) можно назвать зависимость отклика детектора хроматографа от времени при прохождении элюата через ячейку детектора. Хромато грамма состоит из ряда пиков, каждый из которых при полном разделении соответствует одному компоненту анализируемой пробы (рис.2). Площадь или высота пика должна быть пропорциональна концентрации компонента в элюате.

ХРОМАТОГРАФИЧЕСКАЯ СИСТЕМА состоит из хроматографической колонки, заполненной определенным адсорбентом, через которую при определенной температуре прокачивается элюент определенного состава. ВРЕМЯ УДЕРЖИВАНИЯ ВЕЩЕСТВА  — время пребывания исследуемого вещества в хроматографе. На практике время удерживания определяют от момента ввода пробы вещества в хроматограф до момента регистрации максимума сигнала детектора. Каждое вещество при одних и тех же хроматографических условиях имеет свое время удерживания.

ВРЕМЯ УДЕРЖИВАНИЯ НЕСОРБИРУЕМОГО ВЕЩЕСТВА— время удерживания вещества, которое не адсорбируется (не удерживается) адсорбентом.

Рис. 1 Хроматограмма.

А — амплитуда отклика детектора,

Т — время, мин.,

tRi — времена удерживания хроматографических пиков,

t’R1— исправленные времена удерживания,

tM — время удерживания несорбируемого вещества.


Углеводы


Углеводы - один из основных компонентов клеток и тканей живых организмов, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген), участвуют в защитных реакциях организма (иммунитет). Из пищевых продуктов наиболее богаты углеводами овощи, фрукты, мучные изделия (крупы, овощи, фрукты и бобовые). Пища человека состоит примерно на 70% из углеводов.  Углеводы используются в качестве лекарств (гепарин, сердечные гликозиды, некоторые антибиотики). Повышенное содержание некоторых углеводов в крови и моче служит важным диагностическим признаком отдельных заболеваний (сахарный диабет). Суточная потребность человека в углеводах составляет 400-450 г.

 Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды. Углеводы являются очень распространенными природными соединениями, входят в состав растений и живых организмов. В растениях они образуются в результате фотосинтеза:

Углеводы относятся к той группе органических соединений, важнейшими представителями которой являются сахариды, крахмал, целлюлоза и камеди (гумми). Углеводы являются основным источником энергии для поддержания всех функций организма, в особенности деятельности мозга, и необходимы для метаболизма всех остальных питательных веществ. Углеводы синтезируются всеми зелеными растениями, и в организме человека либо усваиваются напрямую, либо откладываются в виде гликогена. Кроме того, углеводы могут формироваться в самом организме из некоторых аминокислот и глицероловой составляющей жиров./2/

Углеводы - органические соединения, состав которых обычно выражается общей формулой Сn(Н2О)m (n и m > 4)./2/

Известны также соединения, относящиеся к углеводам, состав которых не соответствует общей формуле, например сахар рамноза С6Н1205.

Углеводы обычно подразделяют на моносахариды, олигосахариды (продукты конденсации двух или нескольких молекул моносахаридов) и полисахариды. Среди олигосахаридов наибольшее значение имеют дисахариды (диозы) - продукты конденсации двух молекул моносахаридов./2/

Моносахариды


Моносахариды - твердые вещества, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар. Моносахариды проявляют свойства спиртов и карбонильных соединений.(Примеры: глюкоза, фруктоза)./2/


Дисахариды


Дисахариды (биозы) при гидролизе образуют два одинаковых или разных моносахарида. Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (- или -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида. Дисахариды подразделяются на две группы: восстанавливающие (мальтоза) и невосстанавливающие (сахароза)./2/


Полисахариды


Полисахаридами, или полиозами, называются углеводы, молекула которых при гидролизе распадается с образованием молекул моносахаридов (как известно, неспособных гидролизоваться). Таким образом, схематически полисахариды можно представить как ангидридоподобные соединения, образующиеся при выделении воды из нескольких молекул моносахаридов:

п молекул моносахаридов—(n—1)Н2О à1 молекула полисахарида

В зависимости от молекулярной массы и свойств полисахариды делят на две группы:

1. Олигосахариды (от греческого слова олигос — немногий) — низкомолекулярные полисахариды, молекула которых при гидролизе образует небольшое число молекул моносахаридов. Они растворимы в воде, способны кристаллизоваться, часто обладают, подобно моносахаридам, сладким вкусом.

2. Высшие полисахариды — высокомолекулярные вещества, мало растворимые или совсем нерастворимыев воде, в большинстве случаев не кристаллизуются и не обладают сладким вкусом. Четкой границы между олигосахаридами и высшими полиозами не существует — все они представляют собой непрерывный ряд полимерогомологов с постепенно увеличивающейся степенью полимеризации. Обычно к олигосахаридам относят полисахариды со степенью полимеризации до 8—10.

Разделение полисахаридов на группы олигосахаридов и высших полиоз оправдано не только с позиций оценки их молекулярной массы и указанных различий свойств, но и с позиции техники их исследования. Если при изучении олигосахаридов применяются обычные классические методы органической химии, то при исследовании высших полиоз помимо названных методов используются и приемы работы с высокополимерами. (Примеры: крахмал, целлюлоза). /3/

ВЫДЕЛЕНИЕ И ОЧИСТКА УГЛЕВОДОВ /3/


Выделение и очистка высших полиоз и углеводсодержащих биополимеров представляет собой исключительно трудную задачу. В  природных условиях эти соединения находятся в виде сложных смесей с низкомолекулярными веществами, молекулами неуглеводной природы, наконец, с другими высокополимерными углеводами. Трудности возрастают в связи с тем, что, будучи весьма лабильными веществами, полисахариды под влиянием даже слабых воздействий легко подвергаются различным изменениям: часто происходят их деполимеризация, окисление и другие изменения. Факторами, вызывающими такие изменения, помимо применяемых реагентов (обычно щелочной или кислой природы) являются кислород воздуха (в связи с этим иногда выделение приходится вести в атмосфере азота), ферменты, находящиеся в клетке, часто связанные с самими полисахаридами (как, например, фэсфорилаза и амилаза, связанные с гранулами крахмала).

ХРОМАТОГРАФИЧЕСКОЕ РАЗДЕЛЕНИЕ /4/


Основные принципы физического разделения

С разделением веществ приходится сталкиваться при каждом химическом синтезе, и оно является обычной стадией анализа. Как правило, разделение должно предшествовать идентификации вещества.

Разделение относительно просто, если отдельные компоненты смеси находятся в различных фазах. В этом случае оно может быть достигнуто фильтрацией, осаждением, центрифугированием и т. д. Напротив, если несколько веществ находятся в одной фазе, то нужно добиваться либо образования новой фазы путем химического превращения (например, перевода в осадок), либо применять физические методы разделения.

Физические методы разделения основаны на использовании кинетических явлений или фазовых равновесий. Фазовые равновесия лежат в основе таких методов разделения, как дистилляция, сублимация, кристаллизация, экстракция и адсорбция из газообразной или жидкой фазы. В этих процессах молекулы разделяемых веществ переходят через границу раздела фаз в обоих направлениях, причем они стремятся к такому состоянию распределения, при котором, несмотря на продолжающееся молекулярное движение через границу, в каждой из фаз устанавливается постоянная концентрация составляющих веществ.

В других методах разделения, где используются кинетические явления (например, при молекулярной дистилляции или диализе), напротив, происходит перенос вещества через поверхность раздела фаз по меньшей мере за счет одного сорта молекул и только в одном направлении, потому что перешедшие через границу молекулы удаляются от нее. Такие методы разделения имеют незначительную эффективность.

Если разделяемые компоненты мало различаются в отношении свойств, решающих для выбранного метода (например, давление пара, растворимость, адсорбируемость или размер молекул), то концентрирования вещества практически не происходит. В этом случае достаточного разделения можно достигнуть путем многократного использования элементарного акта разделения. Наглядным примером такого процесса может служить многократная экстракция. При дистилляции в ректификационной колонне с насадкой или тарелками также осуществляется ряд последовательных равновесных состояний между жидкостью и паром. Увеличение числа элементарных актов разделения ограничивается требованиями, которые предъявляются ко времени разделения, размерам аппаратуры и соответственно к расходу веществ. Кроме того, высокого обогащения одной из равновесных фаз желательным компонентом достигают только для простых (не выше тройных) систем. В случае многокомпонентных смесей наряду с чистыми веществами всегда получаются смешанные фракции.


Основной принцип хроматографического разделения

Значительное повышение степени разделения возможно, если эффект, вызванный повторным установлением фазовых равновесий, налагается на разделяющий эффект, обусловленный кинетическими явлениями. В данном случае улавливание и удаление молекул, выходящих с поверхности раздела фаз (из неподвижной фазы), осуществляется благодаря постоянному движению одной из фаз (а именно подвижной фазы). Выходящие из неподвижной фазы молекулы, как и при фазовом равновесии, попадают в нее снова, однако при достаточно быстром движении подвижной фазы они не достигают прежнего элемента объема неподвижной фазы, а попадают в ближайший элемент объема в направлении потока.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать