частота L1 - 1575,42 МГц;
частота L2 — 1227,6 МГц.
На частоте L2 излучаются сигналы с военным кодом Р(Y) с высокоточной информацией (precision — точный, или protected — защищенный), защищенным от имитационных помех.
Р-код представляет из себя последовательность псевдослучайных бистабильных манипуляций фазы несущей частоты (Carrier Frequency) с частотой следования, равной 10,23 МГц и периодом повторения в 267 суток. Каждый недельный сегмент этого кода является уникальным для одного из спутников GPS и непрерывно генерируется им в течение каждой недели, начиная с ночи с субботы на воскресенье.
На частоте L1 излучаются сигналы и с военным кодом P(Y), и с общедоступным гражданским кодом (Civilian Code), который часто называют C/A (Clear Acquisition – код свободного доступа). Прием сигнала по коду P(Y) обеспечивает работу в режиме PPS (Precise Positioning Service – высокая точность измерений). Сравнение времени прихода сигналов на частотах L1 и L2 позволяет вычислять дополнительную задержку, возникающую при прохождении радиоволн через ионосферу, что значительно повышает точность измерений навигационных данных.
Прием на частоте L1 с кодом C/A не позволяет определить ошибки, вносимые ионосферой. Структура кода C/A обеспечивает худшие характеристики в режиме SPS (Standart Positioning Service – стандартная точность измерений). Так, если в режиме PPS с вероятностью 0,95 ошибки измерения широты и долготы не превышают 22-23 метра, высоты 27-28 метров и времени 0,09 мкс, то в режиме SPS они увеличиваются соответственно до 100, 140 метров и 0,34 мкс. Среднеквадратическая ошибка определения долготы и широты в режиме PPS составляет не более 8 метров, а в SPS – не более 40 метров. Министерство обороны США, исходя из интересов национальной безопасности, осуществляет «искусственное» ухудшение точности в режиме S/A (Selective Availability – ограниченный доступ). Первоначально режим SPS был необходим для грубого определения пользователем своих координат при вхождении в код P(Y). В настоящее время уровень электроники, программного обеспечения и методов обработки навигационной информации позволяет осуществлять достаточно быстрый захват P(Y) без кода C/A, а также проводить высокоточные определения сигнала по фазе несущей. Кроме того, полностью отработанный наземный автоматический режим дифференциальной коррекции (Differential Positioning), позволяет в ограниченном регионе получать точное определение относительных координат взаимного расположения двух приемников, отслеживать сигналы одних и тех же спутников GPS. К примеру, штатные системы навигации транспорта, при использовании гражданского C/A кода определяют координаты автомобиля с точностью от 2 до 5 метров.
Отечественная навигационная система ГЛОНАСС (советская навигационная система Ураган) аналогична по своему построению американской, но имеет более высокую точность определения координат потребителя.
Впервые в России высококлассные GPS – системы, интегрированные с современными связными и картографическими комплексами, были поставлены компанией «Прин» в 1995 году в Инкомбанк, в специальные подразделения Министерства по чрезвычайным ситуациям, некоторые коммерческие структуры. Они были предназначены для оперативного контроля и управления транспортом в пределах города и региона. Кроме того, реализуются проекты для контроля за транспортом на любых расстояниях с использованием GPS и глобальной системы мобильной связи Inmarsat.
Достоинствами данного метода являются глобальность местоопределения, что позволяет применять его практически на любых территориях и трассах любой протяженности, хорошая точность, возможность определить положение объекта не карте местности, способность определять не только координаты, но и высоту, скорость и направление движения объекта, высокая степень совместимости с автоматизированными системами обработки информации. Не случайно у подобных систем самая широкая область применения. Это системы диспетчеризации городского и специального транспорта, обеспечения безопасности транспорта и материальных ценностей, работающие в реальном масштабе времени на территории города с десятками и сотнями подвижных объектов. Это системы контроля маршрутов транспорта, осуществляющего дальние междугородние и международные перевозки (с передачей информации о маршруте с помощью глобальных систем связи типа Inmarsat или с пассивным накоплении информации о маршруте с последующей обработкой).[1]
1.4 Методы навигационного счисления
Данные методы определения местоположения транспортных средств основаны на измерении параметров движения автомашины с помощью датчиков ускорений, угловых скоростей в совокупности с датчиками пройденного пути и датчиками направления и вычислении на основе этих данных текущего местоположения подвижного объекта относительно известной начальной точки. В целом данные методы могут использоваться в тех же системах, что и методы, основанные на радионавигации. Основное их преимущество по сравнению с методами радионавигации — независимость от условий приема навигационных сигналов бортовой аппаратурой. Не секрет, что на территории современного города с плотной застройкой высокими зданиями могут встречаться участки, где затруднен прием сигналов от наземных и даже спутниковых навигационных систем. На таких участках бортовая навигационная аппаратура не в состоянии вычислить координаты подвижного объекта. Приемные антенны радионавигационных систем должны размещаться на автомашинах с учетом обеспечения наилучших условий приема навигационных сигналов. Это делает их уязвимыми для злоумышленников в случае применения для нужд охраны автомашин или перевозимых ими грузов. Существующие методы камуфлирования (маскировки) приемных антенн достаточно сложны и дороги.
Методы счисления пути и инерциальной навигации свободны от этих недостатков, поскольку аппаратура полностью автономна и может быть интегрирована в конструктивные элементы автомашины с целью затруднения их обнаружения и защиты от умышленного вывода из строя. Недостатками методов навигационного счисления можно считать:
Ø необходимость коррекции параметров движения из-за накапливаемых ошибок измерения;
Ø достаточно большие, в целом, габариты бортовой аппаратуры;
Ø отсутствие доступной малогабаритной элементной базы для создания бортовой аппаратуры (акселерометров, автономных вычислителей пройденного пути, датчиков направления);
Ø сложность обработки параметров движения.
Наиболее перспективным направлением применения подобных методов можно считать их совместное использование с радионавигационными методами, что позволит скомпенсировать недостатки, присущие как одному, так и другому методу. Систему местоопределения с использованием данного метода предлагает ЗАО «Автонавигатор». В бортовом оборудовании системы используются:
Ø датчик пути, подключаемый к спидометру автомашины;
Ø датчик направления на основе феррозондов, измеряющих отклонение оси;
Ø автомашины от магнитного меридиана Земли;
Ø датчик ускорения (акселерометр), обеспечивающий устранение ошибок феррозондового датчика, возникающих из-за негоризонтального расположения объекта относительно поверхности Земли.
Корректировка ошибок счисления производится по цифровой векторной карте полилиний транспортной сети города, что позволяет достичь точности местоопределения до единиц метров. Имеется возможность использования элементов бортового оборудования совместно с приемником GPS.[1]
2 Навигационные системы поиска и слежения
Из-за сложного экономического положения охраны и недостаточного финансирования служб навигационного обеспечения отечественные космические системы определения координат различных потребителей отошли на второй план. Этим воспользовались зарубежные фирмы, между которыми развернулась жесткая борьба за овладение российским рынком.
В последнее время навигационные системы безопасности и поиска, в которых используются сотовая связь и технология GPS, становятся отдельным направлением в автомобильной электронике. Они не только демонстрируют «чудеса техники», но и позволяют снизить расходы на страхование и обеспечивают быстрый поиск угнанного автомобиля.
В настоящее время системы поиска автомобилей продолжают развиваться. В них используются новейшие достижения в области навигации и информационных технологий, возможности и достижения военно-промьшленного комплекса.
Структурно схемы автоматического контроля можно разделить на следующие функциональные подсистемы:
Ø определение координат объекта на местности;
Ø передача данных;
Ø обработка и отображение результатов.
Для определения координат объектов в различных системах используются следующие методы:
Ø автоматическая пеленгация кодированных радиомаяков, установленных на автомобилях;
Ø установка на автомобилях навигационных приемников систем GPS или ГЛОНАСС;
Ø прием специальной аппаратурой, установленной на автомобилях, маломощных сигналов маркеров, обозначающих контрольные точки маршрута.
Во всех службах, где внедряется спутниковая навигация, снижаются эксплуатационные затраты, повышаются безопасность перевозок грузов и дисциплина экипажей. GPS позволяет мобильным подразделениям оперативных и муниципальных служб стать более «боеспособными» без увеличения количества транспорта и личного состава за счет эффективного использования имеющихся ресурсов.