Годовая программа 1млн. штук деталей 79168.
Величина допустимого стачивания резца l = 30 мм.
Стачивание за одну переточку: Dl = 0,8 мм. (Типовые нормы износа и стойкости фасонных резцов. НИИТ Автопром 1981г.)
Стойкость между двумя переточками – 4 часа. Т = 240 мин.
Суммарная стойкость: ТΕ = Т(n + 1) = 68 часов = 4080 мин.
Режимы резания:
Подача: S0=0.03 мм/об (Режимы резания металлов. Справочник под ред. Ю.В. Барановского изд-во “Машиностроение” 1972 г.)
Скорость резания : V=VтаблК1К2К3
К1–коэффициент, зависящий от обрабатываемого материала;
К2–коэффициент, зависящий от стойкости инструмента;
К3–коэффициент, зависящий от диаметра обрабатываемого прутка для фасонных резцов;
Vтабл = 73
К1 = 0.75
К2 = 0.75
К3 = 1.0
V = 73*0.75*0.75*1.0=41.1 м/мин.
Частота вращения:
n = 1000V/πd = 278 об/мин, по паспорту станка 270 об/мин.
Основное технологическое время tо:
tо = L/nS = 19,44/270·0.03 = 2,4 мин.
l–максимальная глубина профиля, l = 19,44мм.
Количество деталей на один резец:
К1 = ТЕ/to = 4080/2,4 = 1700 детали.
Количество деталей на программу:
Кп = П*Ка/К1 = 1000000 * 1.15/1700 = 676 резца
Ка–коэффициент аварийного запаса, Ка=1,15
2. Технология изготовления детали на шести шпиндельном токарном автомате модели 1265-6.
1. Подрезка торца и зацентровка.
рис. 1
2. Сверлить отверстие Æ12, обработка черновым фасонным резцом профиля.
рис. 2
3. Зенкеровать отверстие Æ17, 9.
рис. 3
4. Развёртывание Æ18Н7.
рис. 4
5. Обработка зенковкой фаски, изготовление чистовым фасонным резцом профиля детали.
рис. 5
6. отрезка детали.
рис. 6
4. Установка фасонного резца на станок.
Фасонные резцы для обработки наружных поверхностей с радиальным направлением подачи устанавливают в специальных державках на поперечных суппортах станков.
Конструкция державки должна обеспечивать возможность смены и регулеровки резца и минимально допустимый вылет прутка из зажимной цанги.
На листе 1 данного курсового проекта показана державка призматического резца для позиций 2 и 5 шести шпиндельного автомата 1265 - 6.
Регулировка размера 65+/-0.02 осуществляется при помощи ослабления винтов 15 и регулировки вылета резца винтом 16, а затем затягиванием винтами 15.
Осевая регулировка резца осуществляется следующим образом: отпускаются крепёжные винты 12 и 13, винтом 7 регулируется осевой размер, и затем затягиваются крепёжные винты.
При регулировки резца в радиальном направлении отпускаются крепёжные винты 12, а положение опоры фиксируется винтом 13. Для более точной регулировки предусмотрен винт 6 (см. спецификацию).
Фасонные резцы для обработки наружных поверхностей с радиальным направлением подачи устанавливают в специальных державках на поперечных суппортах станков.
Конструкция державки должна обеспечивать возможность смены и регулировки резца и минимально допустимый вылет прутка из зажимной цанги.
5. Проектирование спирального сверла.
Обоснование использования инструмента.
Спиральное сверло Æ12 предназначено для сверления глухого отверстия диаметра 12 мм на глубину 65мм в заготовке детали №79168.
Обоснование выбора материала режущей и хвостовой части сверла.
Для экономии быстрорежущей стали все сверла с цилиндрическим хвостовиком диаметром более 8 мм и сверла с коническим хвостовиком более 6 мм изготовляются сварными.
В основном, сверла делают из быстрорежущих сталей. Твердосплавные сверла делают для обработке конструкционных сталей высокой твердости (45...56HRC), обработке чугуна и пластмасс. Исходя из твердости обрабатываемого материала – 207 НВ, принимаем решение об изготовлении сверла из быстрорежущей стали Р6М5 ГОСТ 19265-73. Крепежную часть сверла изготовим из стали 40Х (ГОСТ 454-74).
Обоснование выбора геометрических параметров сверла.
Задний угол a. Величина заднего угла на сверле зависит от положения рассматриваемой точки режущего лезвия. Задний угол имеет наибольшую величину у сердцевины сверла и наименьшую величину - на наружном диаметре. Рекомендуемые величины заднего угла на наружном диаметре приведены в (2, стр.151, табл.44). По этим рекомендациям выбираем: a.= 8°.
Передний угол. Также является величиной переменной вдоль режущего лезвия и зависит, кроме того, от угла наклона винтовых канавок w и угла при вершине 2j. Передняя поверхность на сверле не затачивается и величина переднего угла на чертеже не проставляется.
Угол при вершине сверла. Значение углов 2j для свёрл, используемых для различных обрабатываемых материалов приведены в (2, стр.152, табл.46). По этим рекомендациям принимаем: 2j = 118°.
Угол наклона винтовых канавок. Угол наклона винтовых канавок определяет жесткость сверла, величину переднего угла, свободу выхода стружки и др. Он выбирается в зависимости от обрабатываемого материала и диаметра сверла. По (6,табл.5) назначаем w = 30°.
Угол наклона поперечной кромки. При одном и том же угле j определенному положению задних поверхностей соответствует вполне определенная величина угла y и длина поперечной кромки и поэтому угол y служит до известной степени критерием правильности заточки сверла. По рекомендациям (2, стр152, табл.46) назначаем: y = 45°.
Расчет, назначение конструктивных размеров сверла.
Спиральные сверла одного и того же диаметра в зависимости от серии бывают различной длины. Длина сверла характеризуется его серией. В связи с тем, что длина рабочей части сверла определяет его стойкость, жесткость, прочность и виброустойчивость, желательно во всех случаях выбирать сверло минимальной длины. Серия сверла должна быть выбрана таким образом, чтобы
lо ГОСТ ≥ lо расч.
Расчетная длина рабочей части сверла lо , равна расстоянию от вершины сверла до конца стружечной канавки, может быть определена по формуле:
lо = lр + lвых + lд + lв + lп + lк + lф,
где
lр - длина режущей части сверла lр = 0.3*dсв = 0.3*12 = 3.6 мм;
lвых - величина выхода сверла из отверстия lвых = 0 (т.к. отверстие глухое);
lд - толщина детали или глубина сверления, если отверстие глухое lд = 65 мм;
lв - толщина кондукторной втулки lв = 0 ;
lп - запас на переточку lп = D l * (i +1), где
D l - величина, срезаемая за одну переточку, измеренная в направлении оси, D l = 1 мм.;
i - число переточек i = 40;
lп = 1*(40+1) = 41 мм;
lк - величина, характеризующая увеличение длины сверла для возможности свободного выхода стружки при полностью сточенном сверле;
lф - величина, характеризующая уменьшение глубины канавки, полученной при работе канавочной фрезы
lк + lф = 1.5*dсв = 1.5*12 = 18 мм,
тогда
l0 = 3.6 + 0 +65 + 0 + 41 + 18 = 127.6 мм.
В соответствии с ГОСТ 12121-77 (" Сверла спиральные из быстрорежущей стали с коническим хвостовиком ") уточняем значения l0 и общей длины L :
l0 ГОСТ = 140 мм; L = 220 мм.
Положение сварного шва на сверле : lс = l0 + (2...3) = 143 мм.
Диаметр сердцевины сверла dс выбирается в зависимости от диаметра сверла и инструментального материала (6, стр.12):
dс = 0.15*dсв = 0.15 * 12 = 1.8 мм.
Ширина ленточки fл = (0.45...0.32)*sqrt(dс) = 0.7 мм.
Высота ленточки hл = (0.05...0.025)*dс = 0.4 мм.
Хвостовик сверла выполняется коническим - конус Морзе №1 АТ8 ГОСТ 2848 - 75 (6, табл.2 и 3).
Центровые отверстия на сверлах изготовляются в соответствии с ГОСТ 14034-74 (6, рис.5).
Определение количества переточек.
Общая длина стачивания:
lо = lk - lвых - Δ - lр, где
lвsх – величина, характеризующая увеличение длины сверла для возможности свободного выхода стружки при полностью сточенном сверле;
lр – длина режущей части сверла lр = 0.3·dсв = 0.3·12 = 3,6 мм;
lк – длина стружечной канавки;
D = 10 мм;
lо = 130-30-10-3,6=86,4 мм.
Число переточек: n = lo/Dl = 86,4/0,8 = 108 переточка.
Dl – величина стачивания за одну переточку.
6. Проектирования зенкера.
Обоснование использования инструмента.