Фискальная политика

Подобная схема расчетов основана на конструировании системы уравнений (4), (6) и (7) и ее решении относительно параметров , и , что позволяет охарактеризовать эту схему как аналитическую или алгебраическую. Решение системы (4), (6), (7) дает следующие формулы для оцениваемых параметров:

Идентификация параметров функций (4) и (5) позволяет элементарно определить точки Лаффера. При этом точка Лаффера первого рода *, когда dX/d=0, определяется по формуле

а точка Лаффера второго рода **, когда d2T/d2=0, находится в результате решения следующего квадратного уравнения

и в итоге вычисляется по формуле

Дополнительное исследование свойств функций (4) и (5) позволит определить, являются ли найденные стационарные точки точками Лаффера. Если стационарные точки окажутся точками локального минимума или их значения выйдут за область допустимых значений [0;1], то точки Лаффера отсутствуют.

Альтернативой рассмотренному трехпараметрическому методу может служить подход, базирующийся на использовании в качестве производственной функции усеченного полинома третьей степени:. При этом число параметров не меняется, оставаясь равным трем. В этом случае процедура отыскания лафферовых точек корректируется с учетом исходной кубической зависимости, а стационарные точки для фискальной кривой будут отыскиваться в результате решения кубического уравнения. Понятно, что такой алгоритм может генерировать две точки Лаффера второго рода. На наш взгляд, в силу большей однозначности и наглядности на практике следует использовать первый, базовый вариант трехпараметрического метода.

Следует отметить, что аналитический (алгебраический) метод оценки эффективности фискальной политики позволяет использовать функциональные зависимости с числом параметров, не превышающим трех. Большее число параметров требует добавления к базовой системе (4), (6), (7) дополнительных уравнений, что невозможно из-за узкой постановки исходной задачи.

2. Двухпараметрический метод. В основе данного метода лежит аппроксимация процесса экономического роста усеченной квадратичной функцией, включающей только два параметра:

Тогда сумма фискальных поступлений равна

Дополнительное ограничение, накладываемое на функциональные свойства производственной системы, задается уравнением, аналогичным

Построенная система уравнений (14), (16) достаточна для отыскания параметров и . Как и в случае использования трехпараметрического метода, уравнение (14) воспроизводит “точечные” свойства производственной системы, а уравнение (16) – “интервальные”. При этом вспомогательное уравнение, задающее динамические свойства фискальной системы, отсутствует; по умолчании считается, что получаемая сумма налогов полностью детерминируется активностью производственной системы и уровнем фискального давления.

Формулы для оценки параметров на основе решения (14), (16) имеют вид

Точки Лаффера первого и второго рода определяются из (14) и (15) по соответствующим формулам:

Анализ условий второго порядка показывает следующее: для того, чтобы стационарные точки (19) и (20) были действительно точками Лаффера, необходимо и достаточно выполнение двух неравенств: >0 и <0.

Сравнительный анализ методов оценки эффективности фискальной политики. В рамках класса алгебраических методов возможны два подхода к расчету эффективности фискальной системы с помощью точек Лаффера. Проанализируем особенности каждого из них с тем, чтобы выбрать наиболее приемлемый для дальнейших прикладных расчетов.

Прежде всего о эконометрическом подходе. Как указывалось выше, порядок полиномиальной регрессии не должен быть слишком высоким, так как по мере его роста утрачивается смысл эконометрической процедуры сглаживания. Дело в том, что в предельном случае, когда порядок полинома (1) будет равен -1, где – число отчетных ретроспективных точек (лет), количество параметров, подлежащих оценке, также будет равно . В такой ситуации пользоваться статистическими методами построения регрессии бессмысленно, ибо все параметры могут быть однозначно определены алгебраически с помощью процедуры интерполяции исходного динамического ряда X полиномом (1). Таким образом, в предельном случае статистические методы переходят в алгебраические, что иллюстрирует их изначальное методическое единство. Однако процедуры интерполяции, вообще говоря, следует избегать по целому ряду причин.

Во-первых, полиномы высокой степени требуют высокой точности расчетов, так как в противном случае накапливаются вычислительные погрешности. Во-вторых, полиномы выше четвертой степени порождают серьезные алгебраические проблемы при дальнейшем определении стационарных точек. В этом случае задача сводится к решению алгебраического уравнения высокой степени (пятой и выше), что само по себе представляет сложную задачу. Однако даже после ее решения в дальнейшем предстоит классифицировать все стационарные точки на локальные минимумы и максимумы, затем среди точек локального максимума выбрать те, которые являются точками Лаффера. В конечном счете помимо чисто вычислительных проблем придется решать еще проблему интерпретации полученных результатов, что также весьма непросто. В-третьих, сама процедура интерполирования априори предполагает, что имеется жесткая функциональная связь между объемом выпуска и уровнем налогового бремени. Хотя теоретически связь между этими переменными должна существовать, все же желательно, чтобы ее наличие было строго доказано. Кроме того, полиномиальная интерполяция, будучи технически безупречной, с содержательной точки зрения все же представляется несколько искусственной.

Между тем и построение регрессионной зависимости таит в себе целый ряд минусов. Во-первых, в России не накоплен информационный массив для формирования динамических рядов, позволяющих строить эффективные регрессионные модели. Во-вторых, в российской экономике переходного периода отсутствовала какая-либо устойчивость в развитии исследуемого процесса. Так, в одни годы увеличение налогового бремени сопровождалось сокращением ВВП, а в другие – увеличением. Фактически это означает, что некая гипотетическая функциональная связь между ВВП и налоговым бременем постоянно “ломалась” и для каждого короткого периода времени действовала своя производственная функция; попытка отыскать универсальную зависимость для всего периода исследования скорее всего обречена на неудачу. Именно этот факт и предопределяет необходимость использования двух- и трехпараметрического аналитических методов оценки точек Лаффера как наиболее простых и максимально адекватных нынешним экономическим условиям.

Использование параметрических методов базируется на предпосылке о существовании функциональной связи между объемом производства и уровнем налогового бремени. При этом вид этой связи является общим для всех анализируемых годов, меняются в ней лишь параметры. Последние оцениваются “скользящим” способом, т. е. для каждой пары лет отдельно. При этом первый, базовый год фигурирует в качестве основного, а второй – вспомогательного при определении параметров производственной функции первого года. Нам представляется, что такой подход наиболее перспективен и останется таковым в течение, по крайней мере, 5-6 лет, пока не будут накоплены данные о стабилизировавшемся процессе экономического роста.

При сопоставлении двух предложенных алгебраических методов можно сказать следующее. Достоинство трехпараметрического метода, прежде всего, – учет функциональных свойств как производственной (4), так и фискальной (5) функций. Следовательно, оцениваемые параметры одновременно “стягиваются” свойствами производственной и фискальной систем, которые на практике могут сильно различаться; в двухпараметрическом методе мы ограничиваемся свойствами только производственной кривой (14), что означает безусловное упрощение моделируемого процесса и ведет к огрублению получаемых оценок. Кроме того, сам вид исходной квадратичной производственной функции (4) является более общим по сравнению с формулой (14) и тем самым генерирует более богатую аналитическую схему. В этом смысле трехпараметрический метод более предпочтителен. Вместе с тем вычислительная простота, наглядность и элегантность конечных результатов двухпараметрической схемы расчета предопределяют выбор ее в качестве рабочей методики. Нам представляется, что для уяснения макроэкономической ситуации следует пользоваться предельно простыми алгоритмами, не ведущими к двусмысленным интерпретациям.

Анализ свойств производственной и фискальной систем. Развивая последний тезис, покажем, что двухпараметрическая схема отыскания точек Лаффера наиболее приемлема с теоретической точки зрения. Для доказательства этого достаточно проанализировать свойства производственной и фискальной кривых.

Если точки Лаффера первого и второго рода для зависимостей (14) и (15) существуют, то производственная кривая и ее аналог в виде фискальной кривой будут иметь вид, как на рисунке. При этом несложно видеть, что объем производства и налоговые поступления синхронно обнуляются в двух точках: =0 и =-/. Таким образом, активные области определения производственной и фискальной функций совпадают. При этом очевидно, что если -/=1, то предельное налоговое бремя, при котором производственная и фискальная системы полностью “схлопываются”, равно 100%. При 0<-/<1 производственный и фискальный коллапс начинается раньше; в случае, когда -/>1, обе системы продолжают функционировать даже при полном изъятии у хозяйственных субъектов получаемых ими доходов. Величины объема выпуска и собираемых налогов при 100-процентном фискальном бремени во всех случаях совпадают, что соответствует исходным теоретическим постулатам, и равны.

Однако самым важным и интересным представляется вывод о несовпадении точек Лаффера первого и второго рода, причем точка Лаффера второго рода смещена вправо по налоговой оси относительно точки первого рода: **>* (это непосредственно вытекает из формул (19)-(20) и хорошо видно на рисунке при геометрическом наложении производственной и фискальной кривых). Таким образом, производственная и фискальная кривые характеризуются различной степенью кривизны. Можно сказать, что фискальная кривая получается в результате деформации производственной кривой в сторону ее правого края. Максимальное значение объема производства X*, приходящееся на точку Лаффера первого рода, составляет; максимальное значение массы взимаемых налогов T*, приходящееся на точку Лаффера второго рода, составляет.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать