Курс лекций по статистике
p> В статистике различают два вида расчета относительных величин динамики:

. цепные расчеты, – когда относительные величины динамики определяют с переменной базой сравнения. Показывают, как быстро изменяются величина показателя за год или иную единицу времени.

. базисные расчеты, – когда относительные величины динамики рассчитывают с постоянной базой сравнения. Характеризуют изменение показателя за ряд последовательно возрастающих периодов.

Часто, при исчислении относительных величин динамики возникает вопрос о выборе базы сравнения. Обычно, при характеристике динамики за большие промежутки времени в качестве базы принимают период, имеющий большое значение в экономике. Так же часто используют в качестве базы первый член ряда динамики.
5. Относительные величины сравнения представляют собой отношение одноименных величин, относящихся к разным объектам (численность населения в г. Твери и в г. Торжке). Особенно широко применяют его в международных сопоставлениях, причем для исчисления применяют как абсолютные значения, так и относительные.
6. Относительные величины интенсивности – показатели, характеризующие распространение, развитие какого-либо явления в определенной среде. Они измеряют степень или интенсивность распространения показателей или явлений. Чаще всего они представляют собой соотношение разноименных, но связанных явлений, где в числители – величина явления, а в знаменатели – объем, той среды, в которой происходит развитие того явления. Чаще всего их рассчитывают на 100 или 1000 единиц.

Средние величины


Сущность статистических средних

Целый ряд признаков, присущих отдельным объектам в статистике различаются по величине. Однако, при всем разнообразии размеров признака у отдельных объектов, существуют характерные для данных условий размеры этих признаков. Размеры признака, характерные для всей массы единиц, статистика выражает, при помощи средней величины. Средние в статистике – это обобщающий показатель, выражающий типичные размеры варьирующих признаков в конкретных условиях места и времени. Отличительной особенностью средних является то, что в них погашаются индивидуальные различия признака у отдельных единиц совокупности и в результате чего, появляется возможность охарактеризовать общие черты и свойства массовых экономических явлений.

Необходимость характеристики средней величины требует предварительной работы, в частности требует расчленения изучаемой массы объектов на качественно однородные группы. Иначе говоря, метод средних базируется на методе группировки.

Способы расчета статистических средних

Средние величины могут рассчитываться различными способами. В одних случаях достаточно иметь итоговые данные, которые делятся на число единиц, в других случаях необходимо выполнить дополнительные расчетные работы, что зависит от целей, которые поставлены.

В статистике в зависимости от исходных данных, от задач, поставленных перед исследователями, применяют тот или иной способ расчета. Итак, способы расчета средних представляются выражениями:
1. [pic] - средняя агрегатная

Средняя агрегатная употребляется чаще всего в экономических расчетах, потому что, обычно в отчетности, содержаться итоговые данные по ряду признаков, а соотношение их дает нам искомый результат.
2. [pic] - средняя арифметическая

Средняя арифметическая используется в тех случаях, когда имеются данные о распределении численности единиц какой-либо совокупности по величине усредняемого признака.
3. [pic] - средняя гармоническая

Средняя гармоническая определяется, если известны отдельные значения усредняемого признака и соответствующие им значения другого признака.

Простая и взвешенная средняя

Из приведенных выше формул, средней арифметической и средней гармонической следует, что величина средней зависит не только от размера усредняемого признака x, но и в большей мере от значений f и W. При этом, очевидно, что, при вполне определенных конкретных значениях x(x1, x2,…,xn) величина средней будет тем больше, чем больше удельный вес в сумме значений имеют численности тех вариантов, которые обладают наибольшими размерами.

На величину средней не будут оказывать влияния значения f и W в том случае, если они будут одинаковыми для всех вариантов усредненного признака x: f1=f2=…=fn и W1=W2=…=Wn.

Если такое условие имеется, то для исчисления средней арифметической применяют формулу:
4. [pic], где n число вариантов усредняемого признака x.
5. Для средней гармонической:
[pic]

Средние, рассчитанные по формулам №1, 2, 3, т.е. содержащие f и W, называются взвешенными, а значения f и W называются весами средней, а процесс расчета, в свою очередь, называется взвешиванием. Если же расчет производится по формулам №4, 5, средние, определенные таким образом называются простыми или невзвешенными.

При расчете средних чаще всего применяют формулы средних взвешенных.
Формулы № 4, 5 употребляются в тех случаях, когда варианты усредняемого признака не повторяются или не произведена их группировка. Такое разграничение на простые средние и взвешенные очень важно в экономике, потом что применение только простых вместо средне взвешенных может привести к ошибочным результатам и выводам.

Мода и медиана в статистике

В некоторых случаях в статистике для определения типичных характеристик, особенно для отдельных размеров признака, применяют моду и медиану.

Мода

Мода обычно применяется тогда, когда сложно исчислить средние размеры признака. В статистике модой называется величина признака чаще всего встречающегося в данной совокупности.
[pic], где
[pic] - мода,
[pic] - начальная граница модального признака, т.е. признака, обладающего наибольшей численностью в данном распределении,
[pic] - величина модального интервала,
[pic] - частота интервала, предшествующего модальному,
[pic] - частота интервала, следующего за модальным.

Медиана

Медианой называется вариант, делящий численность упорядоченного вариационного ряда, т.е. построенного в порядке возрастания или убывания варьирующего признака на две равные части. Для четного ряда следует принимать среднее значение из двух вариантов, находящихся в середине ряда.

Показатели вариации


Размах вариации

Все признаки, отмеченные в статистике, подвержены колебанию. Самым простым показателем такой колеблимости любого признака является размах вариации. В общем случае он представляет собой разность между наибольшим и наименьшим значением признака.

Размах вариации зависит от двух значений признака, что в экономике означает неточность определения.

Среднее линейное отклонение

Измерителем среднего линейного отклонения считается величина отклонений от средней, взятых без учета алгебраического знака. Исчисленная таким образом величина среднего отклонения называется средним линейным отклонением.

В практике следует иметь в виду, что величины линейного отклонения различных вариационных рядов можно сравнить лишь в том случае, если эти ряды характеризуются примерно одинаковыми средними. А т.к. это бывает в практике не всегда, то для сопоставления колеблимости исчисляются относительные показатели колеблимости, т.е. относят линейные отклонения к арифметической средней.

Используя ранее принятые обозначения варьирующего признака, веса и средней, можно порядок расчета среднего линейного отклонения записать в виде формулы
[pic].

Но в случае, если варианты в распределении признака не повторяются, то среднее линейное отклонение рассчитывается по следующей формуле:
[pic]

Дисперсия и среднее квадратичное отклонение

Средний показатель из отклонений от средней может быть так же получен, если сначала все отклонения возвести в квадрат, затем найти из квадратов среднеарифметическую, а затем из полученной величины извлечь квадратный корень. Полученный таким образом показатель называется среднем арифметическим отклонением ([pic]). Среднее арифметическое из квадрата отклонений называется дисперсией ([pic]).
[pic] - средний квадрат отклонения, взвешенный;
[pic] - средний квадрат отклонения, невзвешенный.

Коэффициент вариации

Очень часто для сравнения степени колеблимости, особенно различных вариационных рядов, исчисляют коэффициент вариации. Для того чтобы его вычислить, надо среднее квадратичное отклонение отнести к средне арифметическому, и этот результат выражается в процентах.
[pic]

Ряды динамики


Классификация и понятие динамических рядов

Для лучшей характеристики экономической ситуации и процессов используют ряды динамики. Они дают более четкое, наглядное представление о явлении и совокупности.

Рядом динамики называется ряд статистических данных, характеризующий изменение явления во времени. Каждое значение в этом ряду называется уровнем, Цифры, образующие ряд динамики, могут характеризовать величину изучаемого явления двояко:
1. за определенный период времени;
2. состояние на определенный момент времени.

В связи с этим в статистике различают:
1. интервальные ряды динамики – такие ряды, которые состоят из количественных значений показателя за какой-то период времени;
2. моментальные ряды – такой ряд, который характеризует размеры какого-либо показателя по состоянию на определенную дату.

Уровни ряда динамики могут выражать как абсолютные размеры явления, так и относительные. Различают
1. ряды динамики абсолютных величин – такие ряды, члены которых выражают абсолютные значения изучаемого показателя за ряд последовательных моментов;
2. ряды динамики относительных величин – такие ряды, члены которых выражают относительные размеры изучаемого явления за ряд интервалов.

Есть еще в расчетах ряды динамики средних величин – такой ряд, члены которого выражают средний уровень изучаемого показателя за какие-то промежутки времени.

Для характеристики ряда динамических показателей применяют следующее:
1. уровень,
2. абсолютный прирост,
3. темп роста,
4. темп прироста,
5. среднее значение показателей.

Уровень ряда динамики

Исходным, при построении любого динамического ряда, является уровень динамики, но для общей характеристики за весь охватываемый период рассчитывают средний уровень ряда, т.е. среднюю величину из всех совокупностей ряда. В рядах динамики средняя из уровней называется хронологической средней. Для интервального ряда с равным интервалом времени находится, как простая средняя арифметическая, т.е. сумма всех уровней отнесенное на число уровней.
[pic]

Средний уровень дает общее представление и развитие явления не за определенные моменты, а за весь процесс.

Абсолютный прирост

Для характеристики динамики рядов используют абсолютный прирост, представляющий собой разность уровней ряда динамики [pic]. Абсолютный прирост показателей либо увеличивает прирост показателей, либо увеличение уровня ряда за определенный период времени. Чтобы определить размер увеличения показателя за весь период времени, охватываемый ряд динамики, находят общий абсолютный прирост, который равен сумме последовательно вычисляемых абсолютных приростов, и вместе с тем, он равен разности между конечным и начальным уровнем.
[pic]

Для характеристики абсолютного прироста за тот или иной период времени в целом, часто определяют средний абсолютный прирост.
[pic], где m – число абсолютных приростов за равные периоды.
[pic]

Темпы роста, прироста и их вычисление

Поскольку абсолютный прирост показателей, на сколько единиц в абсолютном выражении, уровень последующего периода больше или меньше уровня предшествующего, то мы не можем получить ответ на вопрос во сколько раз уровень одного периода больше или меньше уровня другого. Поэтому в статистике используют показатель темпа роста, т.е. отношение уровня данного периода к уровню периода ему предшествующего. Иногда используют не предшествующее значение, а другое, принятое за базу.

Обычно темпы роста выражаются в виде процентов, либо в виде простых отношений и коэффициентов. Темпы, выраженные в виде простых отношений, называют коэффициентом роста.

Для характеристики уровня показателя во времени, наряду с темпами роста, применяют и другой показатель – темп прироста, т.е. отношение абсолютного прироста к уровню, принятому за базу сравнения. Темпы роста и темпы прироста, рассчитанные по одной и той же базе, называются базисными, темпы роста и прироста, рассчитанные к переменной базе сравнения называют цепными.

При возрастании уровней ряда динамики темпы прироста будут значениями положительными, а при убывании – отрицательными, что зависит от абсолютного прироста, который в первом случае имеет знак плюс, а во втором – минус.

Расчет цепных и базисных показателей роста:
[pic] - цепные;
[pic] - базисные.

Расчет цепных и базисных показателей прироста:
[pic] - цепные;
[pic] - базисные.

Вычисление средних темпов роста и прироста

Вычисляемые цепные темпы роста и прироста дают характеристику совокупности от одного промежутка времени к другому. Но в практике бывают ситуации, когда необходимо для общей характеристики процесса исчислить темп показателя за весь период, характеризуемый рядом динамики.

В качестве характеристики используют средний темп роста, который характеризуется средней геометрической всех цепных темпов.
[pic] - средняя геометрическая,
[pic] - средняя геометрическая применительно к темпам роста, где
[pic] - цепные коэффициенты роста, рассчитанные на основе последовательных значений.

Число цепных коэффициентов всегда на единицу меньше числа членов динамики. Т.к. [pic], [pic] и т.д., то формула для расчета средних темпов:
[pic]

Интерполяция и экстраполяция рядов в динамике

В статистике бывают случаи, когда в ряду динамики не достает данных за какой-либо промежуток времени или нужно определить уровень явления на будущее, т.е. уходя за пределы данного ряда.

Интерполяция – нахождение неизвестного промежуточного члена ряда динамики. Наиболее простым примером расчета интерполяции является следующий расчет: из двух членов ряда динамики непосредственно примыкающих к неизвестному члену ряда находится средняя величина, которая принимается за исходный показатель. Иногда для большей достоверности расчетов берут не один, а два или более промежуточных уровней, и находят из средней.

Экстраполяция – нахождение члена ряда динамики в перспективе (на будущее). Широко применяется экстраполяция при планировании развития производства.

Индексы


Понятие об индексе

Индекс – это обобщающий показатель сравнения экономических явлений, состоящих из элементов, не поддающихся суммированию. Для того чтобы проанализировать подобного рода элементы, необходимо найти общую единицу измерения этих элементов.

Индексный метод наиболее широко применяется для анализа экономических явлений и для исчисления темпов динамики. Он так же может быть использован для сравнения показателей, как однородных, так и разнородных, либо за один период времени, так и за несколько периодов. Он дает возможность выявить роль каждого фактора в изменении средней.

Общие и индивидуальные индексы

Индивидуальные индексы дают характеристику изменения отдельных элементов сложного явления.

Общие индексы дают характеристику сложных явлений в целом. Часто исчисляют не общий индекс, а субиндекс, т.е. не все элементы явления, а только часть.

Из всех этих индексов, групповые индексы имеют большее экономическое значение, потому что они раскрывают закономерности в развитии всего явления. В статистике групповые индексы применяются в целом по промышленности, по народному хозяйству, а так же по отдельным группам товаров.

Любой индекс получается в результате сравнения двух абсолютных уровней изучаемого явления. Но исчисляются так же и динамические индексы, когда берут уровни различных периодов. Тот уровень, который сравнивается, называется отчетным или текущим; а тот период, с уровнем которого сравнивается – базисным.

Т.о. каждый индекс каждый индекс характеризует уровень изучаемого явления в отчетном периоде по сравнению с базисным. И, если этот уровень в отчетном периоде больше, чем в базисном, то индекс больше единицы. В первом случае разность между индексом, выраженном в процентах, показывает, на сколько процентов уровень базисного периода выше или ниже отчетного, а во втором случае, – на сколько процентов уровень отчетного периода меньше базисного.

Агрегатный индекс

Агрегатным является индекс, представляющий собой отношение двух абсолютных сумм затрат на производство продукции, исчисленных, при одинаковом количестве продукции отчетного периода.
[pic], где
[pic] - цены базисного периода,
[pic] - цены отчетного периода,
[pic] - количество товаров в натуральном выражении отчетного периода.

Для исчисления общего признака нужно, прежде всего, перейти от совокупности элементов, непосредственно не поддающихся суммированию, к другим совокупностям, элементы которых можно складывать. И этот переход производится с помощью соизмерителей (весов), вводимых в индекс. Такие соизмерители индекса определяют на основе экономического анализа сущности изучаемого явления.

Система взаимосвязанных индексов

Индексный метод широко используется при анализе экономических ситуаций, особенно, когда процесс динамичен, но всегда в результате требуется проанализировать не заключительные данные, а промежуточные результаты, которые во многом зависят от ряда факторов. Поэтому в данном явлении отдельные индексы связаны между собой индексами количества и цены.

Изучение взаимосвязей между экономическими явлениями

Для изучения силы (тесноты) связей факторными и результативными признаками исчисляют эмпирические корреляционные отношения. Для этого надо иметь четкое представление о факторным и результативным признакам. Если каждому значению величины факторного признака соответствует только одно результативного признака, то такая связь между величинами называется функциональной. Эти связи выражаются формулами и широко применяются в математике, физике, астрономии.

В экономических явлениях проявляется зависимость распределения значений результативного признака от нескольких значений факторов. Такого рода связи называются стохастическими. В частном случае стохастической является корреляционная связь. При этой связи одному и тому же значению факторного признака, могут соответствовать самые различные значения результативного признака.

По форме связи бывают:
1. прямолинейные – связи, когда величина результативного признака изменяется равномерно, в соответствие с изменением признака фактора.

Математически такая связь представляется линейным уравнением, а графически – прямой линией;
2. криволинейные – изменение результативного признака под влиянием факторного признака происходит неравномерно или направление одного признака приводит к обратному изменению другого.

Для определения тесноты связи между факторным и результативном признаками используют показатель «индекс детерминации».
[pic], где
[pic]-факторная дисперсия,
[pic]-общая дисперсия.

Этот показатель характеризует, какая часть общей вариации результативного признака «у» объясняется изучаемым фактором «х». Затем определяют индекс корреляции:
[pic], где х и у – признаки.
[pic]
[pic]
[pic] - отклонения, которые характеризуют колеблимость значений [pic] от
[pic].

При функциональной связи, если значения [pic] полностью совпадают с соответствующими индивидуальными значениями [pic], то [pic]=0. При корреляционной связи или при отсутствии связи: [pic].

Расчет полного показателя эмпирического корреляционного значения:
[pic] - прямолинейная связь,
[pic] - криволинейная связь.

Если в расчетах получились следующие корреляционные значения, то:
|0,1-0,3|слабая связь | |
| | | |
| | |Шкала Чертока |
|0,3-0,5|умеренная связь | |
|0,5-0,7| | |
|0,7-0,9|высокая связь | |
|0,9-0,9|очень высокая | |
|9 |связь | |



Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать