0,163
Температурный коэффициент электрического сопротивления (ТКR) резистора определяется выражением
, (1.4)
где Ro –сопротивление проводника при температуре То. Производная определяется по касательной к кривой R(T) (рис.1.2). Для определения производной dR/dT = dR/dq (Т – температура в градусах Кельвина, q – в °С) строится зависимость R(q) (рис. 1.2). При заданной температуре (точка A) проводится касательная к кривой R(q), на которой выбирается участок ab произвольной длины. Производная определяется выражением dR/dq » DR/Dq.
экспериментально удельное электрическое сопротивление определяется по формуле:
, (1.5)
где R – электрическое сопротивление проводника, S, I – площадь поперечного сечения и длина проводника.
При соприкосновении двух различных металлов между ними возникает контактная разность потенциалов. Причиной этого являются неодинаковые значения работ выхода электронов и различные значения концентрации свободных электронов в соприкасающихся металлах.
Термопарой называется устройство, содержащее спай двух проводников или полупроводников. Если спай двух металлов А и В (термопара) имеет температуру T1, а свободные (неспаянные) концы температуру T2, причем T1>T2, то между свободными концами возникает термо-э.д.с.
, (1.6)
где – коэффициент термо-э.д.с. или относительная удельная термо-э.д.с., k=1,381×10-23 Дж/К – постоянная Больцмана, е – заряд электрона, п1, п2 – концентрации свободных электронов в соприкасающихся металлах.
В термопарах используют проводники, имеющие большой и стабильный в рабочем диапазоне температур коэффициент термо-э.д.с.
2. Описание экспериментальной установки
Экспериментальная установка изображена на рис. 1.3. Образцы проволочных резисторов R1–R4, изготовленные из меди, константана, манганина и нихрома, металлопленочный резистор МЛТ-1 (R5) и термопары ТП1–ТП3 помещаются в термостат 1 с термометром 2. Электрическое сопротивление резисторов измеряется омметром 3, э.д.с. термопар – милливольтметром 4. Переключатели П1 и П2 размещены на плате 5 и позволяют поочередно подключать к измерителям исследуемые проводники и термопары. Там же приведена таблица с указанием вида, длины и сечения исследуемых проводников.
3. Порядок проведения работы
Внимание: все измерения по последующим пунктам проводятся одновременно.
3.1. Определение удельного электрического сопротивления проводников и вычисление aR, ar.
Проводники, помещенные в термостат, поочередно подключить к входным зажимам омметра и замерить их сопротивления сначала при комнатной температуре, а затем при повышении температуры до 90 °С с шагом 10 оС. Результаты измерений записать с максимальной точностью в табл.1.2.
Таблица 1.2
проводник
q, oС
20
30
40
50
60
70
80
90
медь
R1
r1
aR1
ar1
Константан
R2
…
…
…
3.2. Определение зависимости термо-э.д.с термопар от температуры.
Одновременно с нагреванием проводников нагреваются помещенные в термостат спаи трех термопар. Холодные концы термопар поочередно подключить переключателем П1 к милливольтметру. Значения измеренных термо-э.д.с. занести в табл. 1.3.
Таблица 1.3
q, °С
ET, мВ
Термопара
медь – константан
хромель – алюмель
хромель – копель
20
…
90
4. Оформление отчета
1. Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.
2. По данным измерений табл. 1.1 построить график зависимости R(q). По графику R(q), а также по формулам (1.3), (1.5) рассчитать и занести в таблицу 1.1 значения aR, ar, и r для каждого из исследованных проводников. По данным таблицы 1.1 построить графики зависимостей R(q), r(q), aR(q) и ar(q).
3. Рассчитать длины свободного пробега электронов для исследованных проводников при комнатной температуре.
4. По данным таблицы 1.2 и по формуле (1.6) рассчитать средние значения относительной удельной термо-э.д.с. для исследованных термопар. построить графики зависимостей ЕТ(q).
5. Привести краткое описание исследованных в работе материалов (химический состав, электрические свойства, области применения).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9