Исполнительные и логические устройства

Исполнительные и логические устройства

Министерство образования  Российской Федерации

Петрозаводский  Государственный  Университет им. Куусенена

Кафедра “Механизации сельского хозяйства”

Курс “Автоматизация ”

Реферат по теме:

“Исполнительные и логические устройства ”

Выполнил: студент гр. 43204

Ковалевский В.Н.

Руководитель: преподаватель

Кондрашов В.Ф.

Петрозаводск

2006 г.

Содержание

Содержание. 2

Введение. 3

Параметры логических интегральных микросхем. 4

Диодно-транзисторная логика. 4

Транзисторно-транзисторные логические элементы. 6

Базовые логические элементы эмиторно-связной логики. 10

ПРИНЦИП ДЕЙСТВИЯ И ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ БЛЭ ЭСЛ. 12

Схемотехника БЛЭКМОП-типа. 14

БЛЭ Интегрально-инжекционной логики. 16

Исполнительные устройства. 18

Список используемой литературы... 20

Введение.

Автоматика, отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле - совокупность методов и технических средств, исключающих участие человека при выполнении операций конкретного процесса. Как самостоятельная область техники автоматизация получила признание на 2-й Мировой энергетической конференции (Берлин, 1930), где была создана секция по вопросам автоматического и телемеханического управления. В СССР термин "Автоматизация " получил распространение в начале 30-х гг.

Автоматизации как наука возникла на базе теории автоматического регулирования, основы которой были заложены в работах Дж. К. Максвелла (1868), И. А. Вышнеградского (1872-1878), А. Стодолы (1899) и др.; в самостоятельную научно-техническую дисциплину окончательно оформилась к 1940. История автоматизации как отрасли техники тесно связана с развитием автоматов, автоматических устройств и автоматизированных комплексов. В стадии становления автоматизации опиралась на теоретическую механику и теорию электрических цепей и систем и решала задачи, связанные с регулированием давления в паровых котлах, хода поршня паровых и частоты вращения электрических машин, управления работой станков-автоматов, АТС, устройствами релейной защиты. Соответственно и технические средства автоматизации в этот период разрабатывались и использовались применительно к системам автоматического регулирования. Интенсивное развитие всех отраслей науки и техники в конце первой половины 20 века вызвало быстрый рост техники автоматического управления, применение которой становится всеобщим.

Вторая половина 20 века ознаменовалась дальнейшим совершенствованием технических средств автоматизации и широким, хотя и неравномерным для разных отраслей народного хозяйства, распространением автоматических управляющих устройств с переходом к более сложным автоматическим системам, в частности в промышленности - от автоматизации отдельных агрегатов к комплексной автоматизации цехов и заводов.

Существенной чертой является использование автоматизации на объектах, территориально расположенных на больших расстояниях друг от друга, например крупные промышленные и энергетические комплексы, системы управления космическими летательными аппаратами и т. д. Для связи между отдельными устройствами в таких системах применяются средства телемеханики, которые совместно с устройствами управления и управляемыми объектами образуют телеавтоматические системы. Большое значение при этом приобретают технические (в т. ч. телемеханические) средства сбора и автоматической обработки информации, т. к. многие задачи в сложных системах автоматического управления могут быть решены только с помощью вычислительной техники. Наконец, теория автоматического регулирования уступает место обобщённой теории автоматического управления, объединяющей все теоретические аспекты автоматизации и составляющей основу общей теории управления.

В большинстве современных ЭВМ и цифровых устройствах различного назначения обработка информации происходит с помощью двоичного кода, когда информационные сигналы могут принимать только два значения: 1 и 0. Операции по обработке двоичной информации выполняют логические элементы.

Используя набор логических элементов, выполняющие элементарные логические операции И, ИЛИ, НЕ, можно реализовать в двоичном коде любую сложную логическую функцию.

Параметры логических интегральных микросхем.

1       Входное U1вх и выходное U1вых напряжение логической единицы – значение высокого уровня напряжения на входе и выходе микросхемы;

2       Входное U0вх и выходное U0вых напряжение логического нуля – значение низкого уровня напряжения на входе и выходе микросхемы;

3       Входной I1вх и выходной I1вых токи логической единицы, входной I0вх и выходной I0вых токи логического нуля;

4       Логический период сигнала , пороговое напряжение Uпор вх – напряжение на входе, при котором состояние микросхемы изменяется на противоположное;

5       Входное сопротивление логической  ИМС – отношение приращения входного напряжения к приращению входного тока (различают R0вх и R1вх), выходное сопротивление – отношение приращения выходного напряжения к приращения выходного тока (различают R0вых и R1вых);

6       Статическая помехоустойчивость – максимально допустимое напряжение статической помехи по высокому U1пом и низкому U0пом уровням входного напряжения, при котором еще не происходят изменения уровня выходного напряжения микросхемы;

7       Средне потребляемая мощность Pпотр ср = (P0потр + Р1потр)/2 , где P0потр и Р1потр – мощности, потребляемые микросхемой в состоянии соответственно логического нуля и единицы на выходе;

8       Коэффициент объединения по входу Коб, показывающий, какое число аналогичных логических ИМС можно подключить к входу данной схемы, и определяющий максимальное число входов логической ИМС;

Коэффициент разветвления  по входу Кразв, показывающий какое количество аналогичных нагрузочных микросхем можно подключить к выходу данной ИМС, и характеризующий нагрузочную способность логической ИМС.

Классические виды логических элементов.

Наиболее распространенный тип  интегральных микросхемы – аналоговые. Их ассортимент необычайно широк и разнообразен, но основное поле деятельности в звуковой технике (усилители и т.д.), поскольку они оперируют сигналами, уровень которых может меняться плавно, непрерывно, приобретая в процессе этих изменений бессчётное множество разных значений.

Дискретные (цифровые) применяются в компьютерных областях, там где нужны быстрые и чёткие сигналы.

Диодно-транзисторная логика.

Одним из первых семейств цифровой логики мы рассмотрим диодно-транзисторную логику. Основная схема ДТЛ приведена в соответствии с рисунком 1а. Если отбросит часть схемы, изображенную пунктиром, схема превращается в инвертор, и по ней можно построить передаточную характеристику Ux от Ua. Если напряжение на входе А равно 0, то диод VD1 смещен в прямом направлении и напряжение U1 равно +0,6 В. Эта величина недостаточна для открывания диодов VD2 и VD3 и перехода база-эмиттер транзистора VТ1. Поэтому ток i1 течет через диод VD1, источник напряжения Ua и на землю. Транзистор VТ1 закрыт, при этом Ux = +5 В. Если Ua увеличивается, то U1 также растет до тех пор, пор пока не достигнет 1,2 В. При этом U1 = 1,8 В. В этот момент VD2, VD2, VТ1 открываются и ток i1 течет через транзистор VТ1 и переводит его в насыщение. Дальнейшее увеличение напряжение Ua запирает диод VD1. но не может повлиять на величину U1 или состояние транзистора  VТ1. Это относительно резкое изменение величины напряжение Ux от +0,5 В до величены на насыщенном транзисторе Uкэ нас приведено, в соответствии с рисунком 1б. Из графика видно, что интервалы напряжений, соответствующие логическим состояниям 0 и 1, примерно равны

0≤U0≤1.2 B

1.5≤U1≤5 В

Практически U0 обычно меньше 0,4 В, а U1 очень близко к 5 В, что обеспечивает хороший шумовой запас по постоянному току.

Если на вход подано напряжение, соответствующее логической 1, то диод VD1 смещен в обратном направлении и, следовательно, потребляет минимальную мощность с выхода предыдущей схемы. Однако если на входе поддерживается напряжение логического 0, то ток i1 должен течь из входной клеммы элемента через насыщенный транзистор на землю. Это соответствует одной единичной нагрузке. Если к одному выходу подсоединено n входов, то насыщенный транзистор должен пропускать ток, в  n раз больше чем i1. Если n увеличивается, то будет расти и напряжение Ua, что эквивалентно увеличению напряжения выходного транзистора. Этот эффект приведен в соответствии с рисунком 1б, где передаточная характеристика изображена для случая одной выходной единичной нагрузки и для случая восьми единичных нагрузок (максимально допустимое количество для базового элемента ДТЛ).

Если к схеме, в соответствии с рисунком 1а, добавить второй диод для получения входа Ub, то напряжение Ux будет соответствовать логической 1, если хотя бы один из входов будет в состоянии логического нуля. Логический нуль на выходе можно получить только в том случае, если на обоих входах присутствует напряжение логической единице, т.е. логическая операция выполняемая данной схемой имеет вид:

Х =

Что соответствует операции НЕ-И. Добавлением дополнительных диодов для расширения объема входа число входов в базовом элементе ДТЛ НЕ-И может доведено до 20.

Если выходы двух (и более) ДТЛ элементов НЕ-И соединены вместе, результирующая схема осуществляет операцию И на выходов элементов НЕ-И. Из схемы видно, что если хотя бы на одном из двух выходов присутствует напряжение логического нуля, то общий выход находится в состоянии логического нуля. Если оба выхода элемента НЕ-И в состоянии логической 1, то на выходе – тоже логическая единица. Такое соединение называется проводным И. Выходная нагрузочная способность такой схемы должна быть уменьшена на одну единичную нагрузку для каждого дополнительного выхода проводном соединении, так как следует учитывать возможность шунтирования общего выхода коллекторными сопротивлениями транзисторов, выходные напряжения которых соответствуют логической единицы.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать