Исследование взаимосвязи электрофизических параметров кремния полученного методом карботермического ...

Исследование взаимосвязи электрофизических параметров кремния полученного методом карботермического ...

Министерство общего и высшего образования

Российской Федерации

 

Иркутский Государственный Университет

Физический факультет

Кафедра электроники твердого тела

 

 

 

 

 

 

 

 

 

 

 


Курсовая работа



Исследование взаимосвязи электрофизических параметров кремния полученного методом карботермического восстановления от технологии его получения.

 

 

 

 

Работу выполнил: студент группы 1431

Ширяев Дмитрий Анатольевич

Научный руководитель: кандидат ф-м наук,

доцент кафедры электроники твердого тела

Синицкий Владимир Васильевич

 

 

 Иркутск 1998г.

 

 

 

 

 

 

Оглавление:


 Введение………………………………………………………..3

1 Технология получения столбчатого мультикремния из кремния полученного методом карботермического восстановления……………………….5

2 Электрофизические параметры и зависимость их от технологий производства…………………………………………………….6

3 Диффузионная длина, фотопроводимость, время жизни…………..7

3.1 Понятие времени жизни…………………………………...8

3.2 Фотопроводимость………………………………………....9

3.3 Многозарядные ловушки в полупроводниках……….…..11

4. Установка для измерения жизни неравновесных носителей заряда в полупроводниках…………………………………………….13

 Заключение…………………………………………………….14

 Использованные источники…………………………………..15

 Приложение……………………………………………………16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

Технология получения чистого полупроводникого кремния на данный момент отработана достаточно хорошо. Наиболее чистые материалы получают путем синтеза кремния в газовую фазу (SiCl3), последующую очистку и восстановления чистого кремния.

Данный метод достаточно дорог для солнечной энергетики, так как в солнечных элементах, где основную стоимость составляет именно используемый кремний и применение кремния восстановленного из газовой фазы приведет к такой цене, что преимущество солнечной (альтернативной) энергетики перед традиционными источниками энергии, будет можно сказать с обратным знаком.

В связи с этим, рядом научных и производственных объединений Иркутской области ведутся работы по получению более дешевых технологий получения солнечного кремния. Технология предусматривает карботермическое восстановление из чистых природных кварцитов, имеющихся в Прибайкалье, и последующую его очистку путем отмывания в различных кислотах и перекристаллизацию при различных технологических параметрах.

Возникает необходимость исследования дефектности структур, а также одержания в нем примесей и связи этих параметров с характеристиками технологических процессов.

В прошлой курсовой работе нами были поставлены и апробированы на получаемых образцах методики, позволяющие получать информацию о типе полупроводника, его электропроводности, о концентрации носителей заряда и их подвижности. Для чего использовались две методики измерения это: 1.Измерение удельной электропроводности четырехзондовым методом 2.Измерение ЭДС Холла. Полученные нами данные хорошо согласовались с табличными данными, что говорило о хорошей применимости данных методов контроля для предъявляемых требований. Прошлогодние результаты говорили о следующих особенностях первых полученных образцов: низкая подвижность меньше на два порядка табличных данных, что приводило к выводу о высоком содержании электронейтральной примесей.

 Институтом Геохимии СО РАН проводились работы по совершенствованию методик получения чистого кремния, было использовано другое сырье, которое синтезировалось в других условиях, очистка кремния методом рафинирования ; что позитивно отразилось на данных полученных нами. Так же ими получены данные химического анализа исследуемых нами образцов.

Задача настоящей курсовой работы, заключалась в дальнейшем исследовании зависимости электрофизических параметров кремния полученного методом карботермического восстановления и разработка методики, позволяющей получать данные о кинетических процессах происходящих в исследуемом кремнии.   




1. Технология получения столбчатого мультикремния из кремния полученного методом карботермического восстановления.

В этом году институтом Геохимии СО РАН проводились работы по совершенствованию методик очистки кремния. Было использовано:

1)Другое сырье, синтезировалось в других условиях (Ирказ), где установлена специализированная печь для получения поликристаллического кремния. 2)Институт применял метод рафинирования (двойная перекристаллизация методом Стокбаргера).

3)Получены данные химического анализа как для сырья, так и для полученных образцов, что позволяет говорить о степени очистки и судить о примесях которые определяют происходящие процессы и механизмы рассеяния в полупроводнике. 

4) Необходимое дробление материла можно осуществлять разными методами, но неизбежно одно, что при использовании, скажем стального молотка, в образце растет концентрация Fe. В связи с этим, для дробления был использован молибденовая насадка для пресса, молибдена мало в исходном материале, то есть его появление можно обосновать используемой в технологическом процессе насадкой.

5) Очистка кремния методом вакуумной сублимации. В атмосфере 10-3 Тор осуществляется нагрев в ростовой печи происходит испарение примесей t плав. которых меньше t плав. кремния. @ 1450[В.В.U1] °С. Дальше доводят температуру в печи до температуры плавления и выдерживают некоторое время для испарения более тугоплавких примесей.  Затем температуру поднимают на отметку 50-70°С выше температуры плавления для испарения еще более тугоплавких примесей и выдерживают в этом режиме некоторое время. Скорость роста при этом лежит около 0.8 см/час.


 








                                                              Рис.1

После роста, получаем кремний, который имеет области монокристалличности схематично изображенные на рис.1. Это так называемый, столбчатый мультикремний.

2. Электрофизические параметры и зависимость их от технологий производства.

Электрофизические параметры образцов приведены в таблице 1.


 

N

Тип

провод.

r

Ом× см

s

Ом-1 × см-1

 

R

см3

к

n

см-3

m

см3

в× с

d

см

7-1

N

0.145

6.850

58.140

1.17*1017

355.04

0.20

7-2

N

0.077

13.04

50.250

1.24*1017

655.26

0.19

8-1

N

5.260

0.190

566.60

1.10*1016

107.65

0.20

8-2

N

1.205

0.830

27.320

2.28*1017

22.680

0.20

9-1

Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать