Расчет электронного режима транзистора 2Т919А
Итак, запишем еще раз исходные данные:
- выходная мощность ВУМа ;
- К.П.Д. согласующей СВЧ-цепи ;
- выходная мощность транзистора ;
- напряжения питания транзистора возьмем равным ;
- основная рабочая частота ;
- мощность эквивалентного генератора возьмем равным ;
- схема включения транзистора ОБ.
Перед расчетом необходимо выяснить выполнение неравенства:
Напряжение режима:
Амплитуда напряжения и тока первой гармоники эквивалентного генератора:
Пиковое напряжение на коллекторе:
при этом необходимое условие выполняется.
Параметры транзистора:
С помощью графика на рис. 4.2 определяем коэффициент разложения . Затем по табл. 3.1 для найденного определяем значения и коэффициента формы [3].
Пиковое обратное напряжение на эмиттере:
при этом необходимое условие выполняется.
Расчет комплексных амплитуд токов и напряжений на элементах эквивалентной схемы (Рисунок 11). За вектор с нулевой фазой принят ток :
Амплитуда напряжения на нагрузке и входное сопротивление транзистора для первой гармоники тока:
Мощность возбуждения (входной сигнал) и мощность, отдаваемая в нагрузку:
Постоянная составляющая коллекторного тока, мощность, потребляемая от источника питания, электронный КПД соответственно:
Коэффициент усиления по мощности, мощность рассеивания транзистором:
Сопротивление эквивалентной нагрузки на внешних выводах транзистора:
Расчет ВЧ-цепи выходного усилителя мощности
Прежде чем согласовывать транзистор с чем-либо, рассмотрим входную и выходную цепи транзистора. Измерения и транзисторов в различных диапазонах частот показали [7], что входное сопротивление можно аппроксимировать полным сопротивлением последовательной цепи из активного сопротивления , индуктивности и емкости (Рисунок 12) резонансная частота которой может быть больше или меньше рабочей частоты усилителя. Выходное сопротивление хорошо аппроксимируется полным сопротивлением параллельной цепи из , , , как это показано на Рисунок 12.
Рисунок 12 Входная и выходная цепи транзистора
Для многих транзисторов, работающих в дециметровом диапазоне волн, с достаточной степенью точности соответствует сопротивлению последовательной цепи из , , а - сопротивлению параллельной цепи из , .
В общем случае СВЧ-цепи могут быть представлены в виде составленных из реактивных элементов четырехполюсников. Назначение СВЧ-цепей заключается в следующем:
1. Обеспечить колебательное напряжение (или ток) определенной частоты, амплитуды и фазы, необходимое для работы транзистора в выбранном энергетическом режиме.
2. Передать с возможно малыми потерями СВЧ-мощность, подводимую к генератору, на вход транзистора, а мощность, отдаваемую транзистором, в нагрузку.
Для получения выбранного энергетического режима транзистора на его входе и выходе необходимо обеспечить требуемую величину сопротивлений по первой гармонике тока, которые известны из расчета режима транзистора. При этом сопротивление и сопротивление согласующей цепи в точках подключения будут комплексно-сопряженными величинами. В выходной СВЧ-цепи в режиме согласования сопротивление согласующей цепи в точках подключения является комплексно-сопряженной величиной сопротивления .
Входная согласующая СВЧ-цепь. Согласно эквивалентной схеме входной цепи транзистора, показанной на Рисунок 12, сопротивление будет:
Реактивная составляющая этого сопротивления может иметь как индуктивный характер (на рабочей частоте более высокой, чем резонансная частота входной цепи транзистора), так и емкостной (на рабочей частоте более низкой, чем резонансная частота входной цепи). Для многих современных транзисторов средне и большой мощности, работающих в дециметровом диапазоне волн, величина сопротивления существенно меньше сопротивления и поэтому можно приближенно принять, что:
и эквивалентная схема входной цепи состоит только из элементов и .
Выходная согласующая СВЧ-цепь. Сопротивление нагрузки в общем случае:
где и - соответственно активная и реактивная составляющая сопротивления . Полное сопротивление по первой гармоники согласно эквивалентной схеме выходной цепи транзистора, показанной на Рисунок 12, равно сопротивлению параллельной цепи из , , . При расчете выходной цепи транзистора бывает удобнее пользоваться вместо сопротивления полной проводимостью , которую можно представить как
где и - соответственно активная и реактивная составляющие проводимости . Характер реактивной составляющей проводимости можно определить расчетом для известных значений и . Для большинства современных транзисторов дециметрового диапазона волн реактивная составляющая выходной проводимости имеет емкостной характер. Поэтому можно приближенно принять, что:
и эквивалентная схема выходной цепи состоит только из элементов и .
Согласующее звено, может иметь вид, показанный на Рисунок 13.
Рисунок 13 Общая схема П-образной цепи
Возьмем в качестве согласующей СВЧ-цепи П-образную цепь, так как выбор более простой Г-образной цепи невозможен из-за невыполнения необходимого условия [4]. П-образую цепь можно рассматривать как две Г-образные цепи (Г-звенья), включенные навстречу друг другу [8] (Рисунок 13) причем каждое из Г-звеньев должно иметь реактивные сопротивления и противоположного знака.
Расчет П-образной цепи между транзистором 2Т919А и нагрузкой (50 Ом). Зададимся величиной добротности первого Г-звена и величинами входного, выходного сопротивлений транзистора соответственно. Зная, необходимое сопротивление нагрузки найдем выходное сопротивление транзистора.
Тогда исходя из эквивалентной выходной схемы транзистора (Рисунок 12):
Входное сопротивление нагрузки пусть будет равным , добротность возьмем равной (добротность целесообразно брать не более 2 ¸ 3) [4].
Определим действующее сопротивление [4]:
при этом необходимое условие выполняется.
Определим реактивные составляющие:
Рассчитаем необходимую величину добротности второго Г-звена:
Определим реактивное сопротивление:
Возьмем в качестве согласующей СВЧ-цепи П-звено как показано на Рисунок 14, воспользовавшись советами, написанными в пособии [4]. Реактивное параллельное сопротивление с учетом выходного реактивного сопротивления транзистора 2Т919А:
Реактивное последовательное сопротивление:
Реактивное параллельное сопротивление:
Величины индуктивности и емкости:
Рисунок 14 П-образная цепь
К.П.Д. П-звена, где - активное сопротивление потерь в катушке индуктивности, - собственная добротность катушки обычно равна 50 ¸ 100. Пусть , тогда:
Расчет цепи питания
Цепь питания должна быть построена таким образом, чтобы не нарушать работы его СВЧ-цепи. Наиболее часто применяется параллельная схема питания (Рисунок 15), обусловленная обычно схемой построения СВЧ-цепи, не позволяющей использовать последовательную систему питания. При параллельной системе питания источник постоянного напряжения подключают к зажимам транзистора через блокировочный дроссель , имеющий большое сопротивление для переменной составляющей тока, с тем чтобы источник не влиял на работу СВЧ-цепи. Так как в практических схемах все же некоторая часть переменного тока будет проходить в цепь питания и, попав в источник напряжения, может создать паразитную связь между отдельными каскадами передатчика, то обычно предусматривают блокирование источника напряжения конденсатором, имеющим малое сопротивление переменному току (конденсатор ). Для исключения прохождения постоянной составляющей тока в нагрузочную цепь в схему включают разделительный конденсатор . Нередко функцию разделительного конденсатора выполняет последовательно включенный конденсатор СВЧ-цепи (Рисунок 17). Выбор величины индуктивности дросселя и блокировочных конденсаторов производят, исходя из требований нормальной работы схемы усилителя и возможности реализации блокировочных элементов [4].