Мощность возбуждения (входной сигнал) и мощность, отдаваемая в нагрузку:
Постоянная составляющая коллекторного тока, мощность, потребляемая от источника питания, электронный КПД соответственно:
Коэффициент усиления по мощности, мощность рассеивания транзистором:
Сопротивление эквивалентной нагрузки на внешних выводах транзистора:
Расчет ВЧ-цепи промежуточного усилителя мощности
Возьмем в качестве согласующей СВЧ-цепи Г-образную цепь, так как она является наиболее простой (Рисунок 16). Г-звено имеет реактивные сопротивления и противоположного знака, причем [4]. При построении схемы Г-цепи предполагается, что сопротивления последовательного и параллельного элементов цепи имеют различный характер. Данное требование обусловлено необходимостью получения на входе и выходе цепи чисто активных сопротивлений.
Рисунок 16 Общая схема Г-образной цепи
Расчет Г-образной цепи между транзисторами 2Т919А и 2Т919В. Зададимся величинами входного и выходного сопротивлений транзистора соответственно. Зная, необходимое сопротивление нагрузки найдем выходное сопротивление транзистора.
Тогда исходя из эквивалентной выходной схемы транзистора 2Т919В (Рисунок 12):
Входное сопротивление транзистора 2Т919А .
Определим необходимую величину добротности [4]:
Рассчитаем реактивное последовательное и параллельное сопротивления:
Возьмем в качестве согласующей СВЧ-цепи Г-звено как показано на Рисунок 17, воспользовавшись советами, написанными в пособии [4]. Определим реактивное последовательное сопротивление Г-звена с учетом входного реактивного сопротивления транзистора 2Т919А:
Рассчитаем реактивное параллельное сопротивление Г-звена с ученом выходного реактивного сопротивления транзистора 2Т919В:
Величины индуктивности и емкости:
Рисунок 17 Г-образная цепь
Расчет Г-образной цепи между входом (50 Ом) транзистором 2Т919В. В качестве согласующей цепи так же возьмем Г-образную цепь. Зададимся величинами входного и выходного сопротивлений транзистора соответственно.
.
Определим необходимую величину добротности [4]:
Рассчитаем реактивное последовательное и параллельное сопротивления:
Возьмем в качестве согласующей СВЧ-цепи Г-звено как показано на Рисунок 17, воспользовавшись советами, написанными в пособии [4]. Определим реактивное последовательное сопротивление Г-звена с учетом входного реактивного сопротивления транзистора 2Т919В:
Реактивное параллельное сопротивление Г-звена:
Величины индуктивности и емкости:
Рисунок 18 Г-образная цепь
Расчет цепи питания
Для расчета цепи питания (Рисунок 15) нам потребуется знать входное и выходное сопротивления транзистора и ( было определено выше).
Определим величину индуктивности (Рисунок 15):
Исходя из полученного неравенства, возьмем .
Величина блокировочного конденсатора :
Исходя из полученного неравенства, возьмем .
Величины блокировочного элемента :
,
Исходя из полученного неравенства, возьмем .
Необходимость в разделительном конденсаторе отсутствует, так как в согласующей цепи между транзистором 2Т919А и 2Т919В присутствует емкость . Её можно считать разделительной емкости по постоянному току.
Ключ модулятор
В качестве ключа модулятора возьмем транзистор КТ3109А. Работа ключа модулятора основана на принципе открытия и закрытия p-n-перехода. Так при подаче на базу положительного импульса транзистор открывается и через него начинает течь ток, как показано на Рисунок 19.
Рисунок 19 Ключ модулятор
Схема преобразователя частоты
Построение ПЧ выполним, используя смеситель и гетеродин. В качестве смесителя выберем арсенид-галлиевый СВЧ смеситель [10] фирмы Mini-Circuits ADE-XXXX.
Таблица 3 Двойной балансный смеситель
Группы моделей
Уровень, дБм
Диапазоны частот, МГц
Потери преобразования,
дБ (макс.)
Коэффициент развязки, дБ (мин.)
Конст.
испол.
ГЧ
ВЧ
ГЧ, ВЧ
ПЧ
ГЧ-ВЧ
ГЧ-ПЧ
ADE-XXXX
+7
до +1
50...4000
0...1500
7,0...9,8
16...45
7...40
П
Этот ПЧ является пассивным, с входными сопротивлениями портов 50 Ом. Диапазон гетеродина и входной ВЧ частоты равен 50…4000 МГц, диапазон выходной частоты равен 0…1500 МГц. Достоинством данной ИС является одинаковые мощности входного сигнала и гетеродина и выходную мощность равную Pвх = Pг = Pвых. ИС отличается малыми габаритами и предназначена для поверхностного монтажа. Включение ИС показано на Рисунок 20.
Рисунок 20 Смеситель ADE-XXXX
В качестве гетеродина выберем схему, устойчиво генерирующую на частотах от 50 до 2500 МГц. Причем изменяются только элементы контура и связи [11]. Принципиальная электрическая схема представлена на Рисунок 21.
Рисунок 21 Универсальный гетеродин широкого применения
Для плавной перестройки частоты нам необходимо менять номиналы элементов контура и связи, для этого индуктивность L1 оставим постоянной (20 мм линия d = 1.5 мм), а емкость C1, C2 сделаем переменной и вынесем их на печатную плату. Выходное сопротивление гетеродина будем считать равным 50Ом, что позволяет соединения гетеродин и смеситель без внешнего согласующего звена.
Схема задержки
В качестве схемы задержки можно выбрать схему [9] представленную на Рисунок 22. Время задержки регулируется постоянной времени RC-цепи, поэтому для регулировки время задержки резистор R1 сделаем переменным.
Рисунок 22 Схема задержки
Для выполнения данной схемы выберем микросхему К155ЛА8 (4 элемента 2И-НЕ), тип корпуса 201.14-1, напряжение питания 14 - ножка составляет 6.3 В.
Разработка конструкции передатчика
Разработка конструкции РПдУ заключается в разработке общей компоновки всех деталей его принципиальной схемы в пределах объема выбранного корпуса. Особенностью рассматриваемого передатчика является высокая частота работы. Это означает, что размеры элементов СВЧ-тракта должны быть намного меньше длины волны , для элементов с сосредоточенными параметрами. Выполнить условие можно, при микроминиатюрном исполнении в виде ГИС. Использование ГИС является необходимым, также по причине реактивного параметра выводов и соединительных проводников между дискретными элементами сильно влияющих на работе устройства. В интегральном исполнении же указанные параметры близки к нулю.
Прежде чем приступить к формированию конструкции, необходимо определить геометрические параметры используемых элементов. Произведем расчет пленочных элементов, исполняемых на ГИС.
Пленочные элементы
Элементы СВЧ-тракта, исходя из выше сказанного, будут выполнены в виде пленок на подложке (габариты элементов недолжны превышать , что составляет ).
Так как необходимо создание и индуктивностей, и емкостей, то для формирования элементов будем использовать толстопленочную технологию. Толстопленочная технология позволяет реализовывать и извилистую, и многослойную структуру. Современные технологии [6] позволяют получить элементы толщиной менее 10 мкм, при минимальной ширине 25 мкм.
Толстопленочные индуктивности
Для расчета индуктивности в пленочном исполнении можно воспользоваться методикой предложенной в [4]. В формулах все линейные размеры катушек выражаются в [мм], а индуктивность в [нГн].
Таблица 4
Тип катушки |
Формула для расчета индуктивности катушки |
Определение длины провода катушки |
Одновитковая |
||
Плоская квадратная спираль |
где , n – число витков, мм; S – шаг спирали, мм |