Проектирование модуля АФАР

Если напряжение смещения должно быть запирающим, то можно применить автосмещение, включив сопротивление , забло­кированное конденсатором. При отпирающем смещении требуется до­полнительный источник напряжения.


3.2. Методика расчета режима транзистора
мощного СВЧ умножителя частоты

В промежуточных каскадах радиопередающих устройств СВЧ при­меняют умножители частоты о выходной мощностью до сотен милли­ватт. Такие СВЧ-умножители являются уже мощными. Умножение часто­ты в них достигается выделением нужной n-й гармоники из импульса коллекторного тока. При расчете режима транзистора, работающего на частотах 108... 109 Гц (сотни МГц), используют кусочно-линейную модель транзистора. При этом дополнительно учитывают индуктивнос­ти выводов транзистора, емкость закрытого эмиттерного перехода и потери в материале коллектора. Предполагают, что транзистор включен по схеме с общей базой (ОБ) и возбуждается от генератора гармонического тока. Схема ОБ обеспечивает лучшие энергетические параметры мощного умножителя СВЧ, чем схема с общим эмиттером (ОЭ). В схеме ОЭ за счет обратной связи через емкость Ск импульс коллекторного тока деформируется и имеет малые коэффициент фор­мы gn(θ), а следовательно, и КПД, и мощность в нагрузке.

Выходная мощность умножителя ограничена несколькими фактора­ми. К ним относятся предельно допустимые значения обратного на­пряжения на эмиттерном переходе Uбэ доп и мощности рассеяния, а также критический коллекторный ток Iкр1.

При выборе угла отсечки надо учитывать следующее. Пиковое обратное напряжение Uбэ пик увеличивается при уменьшении угла отсечки θ, что может ограничить мощность, отдаваемую умножителем частоты. При больших углах отсечки уменьшается КПД и растет рас­сеиваемая мощность Рк, что может привести к нереализуемости режи­ма транзистора. Если при оптимизации мощности умножителя частоты опираться только на ограничения по коллекторному току, считая максимальный iк max=Iкр, то оптимальным углом отсечки при n=2 оказывается θ=60°, а при n=3 θ=40°. При этих углах отсечки КПД будет достаточно высоким, но надо не допустить пре­вышения Uбэ доп. Поэтому часто угол отсечки и для n=2, и n=3 выбирают равным θ=60°.

Расчет режима транзистора ведут на заданную выходную мощ­ность транзистора Pвых n на рабочей частоте nf, определенную по вы­ходной мощности умножителя Pвых n и КПД его выходной согласующей цепи hк вых: Рвых n=Рвых/hк вых.

Для расчета используем методику, которая имеет в своей основе следующие допущения:

интервал рабочих частот соответствует неравенствам: , ;

транзистор возбуждается от генератора гармонического тока;

крутизна по переходу Sп считается вещественной;

напряжение на коллекторе — гармоническое;

схема включения транзистора — ОБ;

влиянием индуктивности общего вывода транзистора Lб прене­брегают.

Исходя из заданных Pвых n и nf по справочникам выбирается транзистор с учетом выполнения условий  и . Вследствие больших потерь в материале коллектора на верхних часто­тах транзистора целесообразно выбирать транзистор с запасом по вы­ходной мощности Pвых n примерно в 2,0… 2,5 раза. Параметры выбран­ного транзистора рекомендуется свести в таблицу в следующем поряд­ке:


, Вт;
, МГц;
, В;
Uкэ доп, В;
U
бэ доп, В;
, В;
Iкр, А;
Tп, °С;
Sгр, А/В;
fгр, МГц;
Ск, пФ;
rб, Ом;
rэ, Ом;
rк, Ом;
Lб, нГн;
Lэ, нГн;
Lк, нГн.

Напряжение питания Uк0 принимается равным или близким к , в типовом режиме транзистора. Угол отсечки целесообразно выбрать для n=2 и n=3 θ=60°. По табл. 3.1 [1] определяют для выбранно­го θ коэффициенты α0, α1, α2, γ1, γn.

Расчет ведут в следующем порядке (режим работы принимают граничным).

1. Сопротивление потерь коллектора в параллельном эквиваленте:

.

2. Напряженность граничного режима

,

где .

3. Амплитуда напряжения и тока n-й гармоники, приведенные к эквивалентному генератору:

; .

4. Сопротивление коллекторной нагрузки:

.

5. Амплитуда n-й гармоники, высота импульса тока эквива­лентного генератора, постоянная составляющая коллекторного тока соответственно:

; ; .

Провести проверку выполнения условия . Если условие не выполняется, то следует сменить транзистор, так как из-за умень­шения частоты fгр нельзя получить заданную мощность.

6. Амплитуда тока возбуждения и коэффициент передачи по то­ку в схеме ОБ:

, .

7. Пиковое обратное напряжение на эмиттере:

.

8. Напряжение смещения:

,

где ; ; ; .

9. Диссипативная и реактивная составляющие входного сопротивления транзистора:

;

.

10. Мощность источника питания, КПД:

; .

11. Коэффициент усиления по мощности:

.

12. Мощность возбуждения:

.

13. Мощность рассеяния:

.

14. Диссипативная и реактивная составляющие сопротивления нагрузки, приведенной к внешнему выводу коллектора, в параллельном эквиваленте:

;

.

 





4. Результаты расчетов
4.1. расчет усилителя мощности
4.1.1. расчет режима работы активного прибора (транзистора)

Выбор транзистора, расчет его режима работы и энергетических параметров выполнен на ЭВМ с помощью программы PAMP1, разработанной на каф. 406, и реализующей методику, описанную в п. 3.1.

Исходные данные:


ЧАСТОТА fвх И МОЩНОСТЬ P1 УСИЛИТЕЛЯ,
ПАРАМЕТРЫ ТРАНЗИСТОРА (2Т934А)

fвх=0,25 ГГц;

P1=0,0614 Вт;

F1=1 ГГц;

R1=3 Ом;

R2=6 Ом;

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать