Спектральный анализ и его приложения к обработке сигналов в реальном времени

· для задачи анализа алгоритмов блочной обработки всей последовательности отсчетов формируем дискретизированные отсчеты данных тест-сигнала из суммы комплексных синусоид и аддитивных окрашенных шумовых процессов, сформированные посредством пропускания белого шума через фильтр с частотной характеристикой типа приподнятого косинуса или окна Хэмминга. Таким образом, в этом случае эксперимент определяется набором , где - последовательность комплексных синусоид с амплитудами  дБ и частотами Гц, а  - последовательность шумовых процессов с параметрами : центральная частота Гц.,  динамический диапазон перекрываемых частот  Гц., мощность шума дБ.

· для анализа классических алгоритмов блочной обработки всей последовательности в части применения окон данных и корреляционных окон эксперимент и подсчет основных характеристик окон будем производить над дискретизированными отсчетами соответствующих функций.

· для анализа алгоритмов обработки сигналов в реальном масштабе времени используем аудио и речевой сигналы.

Выходными данными экспериментов будем считать :

· для задачи анализа алгоритмов блочной обработки всей последовательности отсчетов :

1.) оценку спектральной плотности мощности, полученную с помощью того или иного метода спектрального анализа, по которой можно судить о качестве применяемого метода, сравнивая истинную спектральную плотность мощности сформированного сигнала с полученной оценкой

2.) вычислительные и временные затраты метода

· для анализа окон данных и корреляционных окон - расчетные основные характеристики такие как : максимальный уровень боковых лепестков, эквивалентная ширина полосы, ширина полосы по уровню половинной мощности, степень корреляции и т.д..

· для анализа сигналов в реальном масштабе времени : спектральная плотность мощности (функция, зависящая в этом эксперименте также и от времени). Для оценки составляющих в спектре сигнала в данный момент времени.


 

Глава 1. Теоретический анализ существующих алгоритмов спектрального анализа.

1.1. Введение в спектральное оценивание

 

1.1.1. Задача спектрального оценивания

Задача спектрального оценивания подразумевает оценивание некоторой функции частоты. О характеристиках спектральной оценки судят по тому, насколько хорошо она согласуется с известным спектром тест-сигнала в некоторой непрерывной области частот.[1]


1.1.2. Проблемы в области спектрального оценивания.

Интерес к альтернативным методам спектрального анализа поддерживается тем улучшением характеристик, которое они обещают, а именно более высоким частотным разрешением, повышенной способностью к обнаружению слабых сигналов или же сохранением  «достоверности»  формы спектра при меньшем числе используемых параметров. Аналитически описать характеристики большинства методов в случае ограниченного времени анализа (то есть в случае короткой записи данных)  весьма  затруднительно[1]

Спектральное разрешение относится к числу главных проблем современного спектрального оценивания, в особенности применительно к анализу коротких последовательностей данных. При этом то, что понимается под термином «разрешение», носит весьма субъективный характер. Принято характеризовать относительные величины разрешающей способности двух спектральных оценок на основе визуальных впечатлений. [1]


1.1.3. Спектральные оценки по конечным последовательностям данных

Спектральная оценка, получаемая по конечной записи данных, характеризует некоторое предположение относительно той истинной спектральной функции, которая была бы получена, если бы в нашем распоряжении имелась запись данных бесконечной длины. Именно поэтому поведение и характеристики спектральных оценок должны описываться с помощью статистических терминов. Общепринятыми статистическими критериями качества оценки являются ее смещение и дисперсия. Аналитическое определение этих величин обычно наталкивается на определенные математические трудности, поэтому на практике просто совмещают графики нескольких реализаций спектральной оценки и визуально определяют смещение и дисперсию как функции частоты. Те области совмещенных графиков спектральных оценок, где экспериментально определенное значение дисперсии велико, будут свидетельствовать о том, что спектральные особенности, видимые в спектре отдельной реализации, не могут считаться статистически значимыми. С другой стороны, особенности совмещенных спектров в тех областях, где эта дисперсия мала, с большой достоверностью могут быть соотнесены с действительными частотными  составляющими анализируемого сигнала. Однако в случае коротких  записей данных часто не удается  получить несколько  спектральных оценок, да и сам статистический анализ отдельных спектральных оценок, полученных по коротким записям данных, в общем, случае представляет собой весьма трудную проблему.[1] 


1.1.4.Общая картина

Из формального определения спектра, следует, что спектр является некоторой функцией  одних лишь статистик второго порядка, относительно которых в свою очередь предполагается, что они остаются неизменными, или стационарными во времени. Следовательно, такой спектр не передает полной статистической информации об анализируемом случайном процессе, а значит, дополнительная информация может содержаться в статистиках третьего и более высокого порядка. Кроме того, многие обычные сигналы, которые приходится анализировать на практике, не являются стационарными. Однако короткие сегменты данных, получаемые из более длинной записи данных, можно считать локально стационарными. Анализируя изменения спектральных оценок от одного такого сегмента к другому, можно затем составить представление и об изменяющихся во времени статистиках сигналов, то есть нестационарных.    

 

 

1.2.Основные определения и теоремы классического спектрального анализа

1.2.1.Непрерывно-временное преобразование Фурье.

Определение: Непрерывно-временным преобразованием Фурье называется функция

В спектральном анализе переменная в комплексной синусоиде   соответствует частоте, измеряемой в герцах, если переменная измеряется в единицах времени (в секундах). По сути дела, непрерывно-временное преобразование Фурье идентифицирует частоты и  амплитуды тех комплексных синусоид, на которые разлагается некоторое произвольное колебание.

Определение: Обратное преобразование Фурье определяется выражением

Существование прямого и обратного преобразований Фурье с непрерывным временем для данной функции определяется целым рядом условий. Одно из достаточных условий состоит в том, что сигнал должен быть абсолютно интегрируемым в смысле

 

 

1.2.2 Операции дискретизации и взвешивания для получения дискретно-временных рядов Фурье.

Определение:  Функцией отсчетов с интервалом называется следующая функция :

  

Предположим, что берутся отсчеты непрерывного действительнозначного сигналас ограниченным спектром, верхняя частота которого равна герц, так что преобразование Фурье равно нулю при частотах больше . Отсчеты сигналас интервалом Т могут быть получены посредством умножения этого сигнала на функцию отсчетов:

Теперь найдем непрерывное преобразование Фурье , это свертка спектра сигнала  и преобразования Фурье функции отсчетов по времени с интервалом Т секунд :

 

То есть свертка  с преобразованием Фурье функции отсчетов просто периодически продолжает  с частотным интервалом 1/T Гц, соответствующим частотному интервалу между импульсными функциями. В общем случае отсчеты в одной области (например, временной) приводят к периодическому продолжению в области преобразования (например, частотной). Если частота отсчетов выбрана достаточно низкой, так что , то периодически продолженные спектры будут перекрываться с соседними (эффект наложения в частотной области). Частота отсчетов получила название частоты отсчетов Найквиста.

Для того чтобы восстановить исходный временной сигнал по его отсчетам, то есть осуществить интерполяцию некоторого континуума значений между этими отсчетами, можно пропустить дискретизованные данные через идеальный фильтр нижних частот, обладающий  прямоугольной частотной характеристикой (взвешивание в частотной области ), используя теоремы о свертке во временной и частотной областях, получим :

Полученное выражение представляет собой математическую запись теоремы отсчетов во временной области, которая утверждает, что с помощью этой интерполяционной формулы  действительный сигнал с ограниченным спектром может быть точно восстановлен по бесконечному счетному числу известных временных отсчетов, взятых с частотой . Аналогичный результат может быть получен и для комплексных сигналов с ограниченным спектром.


Дуальной к теореме отсчетов во временной области является следующая
Теорема. Для ограниченного временем  по длительности сигнала  верно, что

где

Таким образом, преобразование Фурье  некоторого сигнала с ограниченной длительностью может быть однозначно восстановлено по эквидистантным отсчетам спектра такого сигнала, если выбранный интервал отсчетов по частоте удовлетворяет условию герц.

Пусть дан произвольный непрерывный сигнал  и его преобразование , которые в общем случае могут быть неограниченными по спектру и по длительности. Если положить, что N отсчетов  во времени взяты с равномерным интервалом T секунд, то ограничим спектр этого сигнала частотами  герц взвешиванием в частотной области: , здесь - функция окна в частотной области. При этом сигнал трансформируется следующим образом . Далее берутся отсчеты во временной области сформированного первой операцией и ограниченного по спектру сигнала , соответствующие изменения в спектре можно представить как . Теперь ограничимся длительностью сигнала NT :. И снова свертка в частотной области для спектра полученного на этапе 2 . Последнее что осталось сделать - взятие отсчетов по частоте с интервалом 1/NT герц, это приводит к периодическому продолжению исходных N временных отсчетов. Сигнал на последнем этапе принимает следующий вид : , а его преобразование : .

Окончательно можно получить, что если исходный сигнал  и - его преобразование, то на четвертом шаге   и  связаны следующими соотношениями :

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать