Спектральный анализ и его приложения к обработке сигналов в реальном времени

Автокорреляционная последовательность на практике может быть оценена по конечной записи данных следующим образом (несмещенная оценка):

где

или смещенной оценкой автокорреляции, которая имеет меньшую, по сравнению с несмещенной оценкой, дисперсию:

где

 Коррелограммный метод заключается в подстановке в определение спектральной плотности мощности оценку автокорреляционной последовательности (коррелограммы). Таким образом, имея две оценки автокорреляционной последовательности получаем две оценки спектральной плотности мощности:

, , где

, где  - ядро Дирихле

Эффект неявно присутствующего окна из-за конечности данных приводит к свертке истинной спектральной плотности с преобразованием Фурье дискретно-временного прямоугольного или треугольного (как в случае со смещенными оценками) окна. Для уменьшения этого эффекта используется корреляционное окно и коррелограммная оценка спектральной плотности мощности в общем виде выглядит следующим образом:

Экспериментальные результаты приведены в соответствующем разделе.


1.3.5. Область применения.

Классические методы спектрального анализа применимы почти ко всем классам сигналов и шумов в предположении о стационарности. Вычислительная эффективность периодограммных и коррелограммных методов основана на использовании алгоритма Быстрого Преобразования Фурье. Недостатком всех методов спектрального анализа является искажения в спектральных составляющих по боковым лепесткам из-за взвешивания данных при помощи окна. Сравнение экспериментальных результатов с другими методами и характеристики взвешивающих окон приведены в соответствующем разделе.




1.4. Авторегрессионное спектральное оценивание.

1.4.1. Введение

Одна из причин применения параметрических моделей случайных и процессов и построения на их основе методов получения оценок спектральной плотности мощности обусловлена увеличением точности оценок по сравнению с классическими методами. Еще одна важная причина  - более высокое спектральное разрешение. Далее рассматриваются следующие методы: метод Юла-Уалкера оценивания авторегрессионных параметров по последовательности оценок автокорреляционной функции, метод Берга оценивания авторегрессионных параметров по последовательности оценок коэффициентов отражения, метод раздельной минимизации квадратичных ошибок линейного предсказания вперед и назад - ковариационный метод, метод совместной минимизации квадратичных ошибок прямого и обратного линейного предсказания - модифицированный ковариационный.  

Модель временного ряда (называемая модели авторегрессии-скользящего среднего в случае входной последовательности - белого шума), которая пригодна для аппроксимации многих встречающихся на практике детерминированных и стохастических процессов с дискретным временем, описывается следующим разностным уравнением:

Системная функция , связывающая вход и выход этого фильтра имеет рациональную форму:

Если в качестве входной последовательности использовать белый шум, то приходим к АРСС-модели. Спектральную плотность для АРСС-модели получаем, подставляя , что дает

, где

, , а  - дисперсия

возбуждающего белого шума

В частных случаях для авторегрессионной модели и модели скользящего среднего получаем соответственно :

 

1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.

Из соотношения, связывающего параметры АРСС-модели с порядком авторегрессии p и скользящего среднего q:

Поскольку полагается, что u[k] - белый шум, то  

,

, m>q

, m<0

В частном случае для авторегрессионных параметров, получаем :

,

, m=0

, m<0

В матричном виде эти соотношения выглядят следующим образом :

Таким образом, если задана автокорреляционная последовательность для , то АР-параметры можно найти в результате решения последнего матричного соотношения (называемого нормальными уравнениями Юла-Уалкера), где автокорреляционная матрица является и теплицевой, и эрмитовой.

Наиболее очевидным подходом к авторегрессионному оцениванию является решение нормальных уравнений Юла-Уалкера, в которые вместо значений неизвестной автокорреляционной функции подставляем их оценки. Результаты экспериментов с этим, первым методом АР-оценивания и сравнение с другими методами этого класса приведены в соответствующем разделе.


1.4.3. Методы оценивания коэффициентов отражения.

Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :

, где n=1,2,..p-1

Коэффициент отражения определяется по известным значениям автокорреляционной функции :

, где

Из всех величин только  непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.


1.4.3.1. Геометрический алгоритм.

Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:

 

Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой   и в рекурсивное соотношение для авторегрессионных параметров:

Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :

Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :

 

Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка 

Окончательный вид выражений геометрического алгоритма :

, где n=1,2,..p-1

,  

, где

 

1.4.3.2. Гармонический алгоритм Берга.

Алгоритм Берга идентичен геометрическому, однако оценка коэффициента отражения находится из других соображений, а именно : при каждом значений параметра p в нем минимизируется арифметическое среднее мощности ошибок линейного предсказания вперед и назад (то есть выборочная дисперсия ошибки предсказания):

Приравнивая производные к нулю, имеем оценку для  :

Некоторым обобщением является взвешивание среднего квадрата ошибки предсказания для уменьшения частотного смещения, наблюдаемого при использовании базового метода Берга:

что приводит к следующей оценке :

 

 

1.4.4. Оценивание линейного предсказания по методу наименьших квадратов.

Налагая ограничения на авторегрессионные параметры, с тем чтобы они удовлетворяли рекурсивному выражению метода Левинсона, в методе Берга происходит минимизация по одного параметра - коэффициента отражения . Более общий подход состоит в минимизации одновременно по всем коэффициентам линейного предсказания.

Итак, пусть для оценивания авторегрессионных параметров порядка p используются последовательность данных .Оценка линейного предсказания вперед порядка p для отсчета будет иметь форму:

где  - коэффициенты линейного предсказания вперед порядка p.

Ошибка линейного предсказания :

В матричном виде это выражение записывается как :

и соотношение для ошибки :

Однако если рассматривать, в котором  минимизируется следующая, невзвешенная  выборочная дисперсия :

то матрица принимает теплицевый вид (далее ее будем обозначать ).

Нормальные уравнения, минимизирующие средний квадрат ошибки имеют следующий вид:

 

Элементы эрмитовой матрицы имеют вид корреляционных форм

, где

Таким образом, авторегрессионные параметры могут быть получены в результате решения нормальных уравнений. Рассмотрим алгоритм, который в решении нормальных уравнений учитывает тот факт, что эрмитова матрица  получена как произведение двух теплицевых  и в результате этого сводит количество вычислений к  . При использовании алгоритма Холецкого потребовалось бы операций.

Ошибки линейного предсказания вперед и назад p-ого порядка

Здесь вектор данных , вектор коэффициентов линейного предсказания вперед  и вектор линейного предсказания назад определяется следующими выражениями:

 , ,

На основе отсчетов измеренных комплексных данных ковариационный метод линейного предсказания позволяет раздельно  минимизировать суммы квадратов ошибок линейного предсказания вперед и назад:

что приводит к следующим нормальным уравнениям :

,

Введем необходимые для дальнейшего определения :

исходя из вида  и  можно записать :

, ,

где вектор столбцы  и даются выражениями :

,

Важными также являются следующие выражения :

Пара векторов-столбцов и  определяются из выражений :

Аналогично определяются вектора и , а также и  через матрицы  и .

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать