Автокорреляционная последовательность на практике может быть оценена по конечной записи данных следующим образом (несмещенная оценка):
, где
или смещенной оценкой автокорреляции, которая имеет меньшую, по сравнению с несмещенной оценкой, дисперсию:
, где
Коррелограммный метод заключается в подстановке в определение спектральной плотности мощности оценку автокорреляционной последовательности (коррелограммы). Таким образом, имея две оценки автокорреляционной последовательности получаем две оценки спектральной плотности мощности:
, , где
, где - ядро Дирихле
Эффект неявно присутствующего окна из-за конечности данных приводит к свертке истинной спектральной плотности с преобразованием Фурье дискретно-временного прямоугольного или треугольного (как в случае со смещенными оценками) окна. Для уменьшения этого эффекта используется корреляционное окно и коррелограммная оценка спектральной плотности мощности в общем виде выглядит следующим образом:
Экспериментальные результаты приведены в соответствующем разделе.
1.3.5. Область применения.
Классические методы спектрального анализа применимы почти ко всем классам сигналов и шумов в предположении о стационарности. Вычислительная эффективность периодограммных и коррелограммных методов основана на использовании алгоритма Быстрого Преобразования Фурье. Недостатком всех методов спектрального анализа является искажения в спектральных составляющих по боковым лепесткам из-за взвешивания данных при помощи окна. Сравнение экспериментальных результатов с другими методами и характеристики взвешивающих окон приведены в соответствующем разделе.
1.4. Авторегрессионное спектральное оценивание.
1.4.1. Введение
Одна из причин применения параметрических моделей случайных и процессов и построения на их основе методов получения оценок спектральной плотности мощности обусловлена увеличением точности оценок по сравнению с классическими методами. Еще одна важная причина - более высокое спектральное разрешение. Далее рассматриваются следующие методы: метод Юла-Уалкера оценивания авторегрессионных параметров по последовательности оценок автокорреляционной функции, метод Берга оценивания авторегрессионных параметров по последовательности оценок коэффициентов отражения, метод раздельной минимизации квадратичных ошибок линейного предсказания вперед и назад - ковариационный метод, метод совместной минимизации квадратичных ошибок прямого и обратного линейного предсказания - модифицированный ковариационный.
Модель временного ряда (называемая модели авторегрессии-скользящего среднего в случае входной последовательности - белого шума), которая пригодна для аппроксимации многих встречающихся на практике детерминированных и стохастических процессов с дискретным временем, описывается следующим разностным уравнением:
Системная функция , связывающая вход и выход этого фильтра имеет рациональную форму:
Если в качестве входной последовательности использовать белый шум, то приходим к АРСС-модели. Спектральную плотность для АРСС-модели получаем, подставляя , что дает
, где
, , а - дисперсия
возбуждающего белого шума
В частных случаях для авторегрессионной модели и модели скользящего среднего получаем соответственно :
1.4.2. Оценивание корреляционной функции - метод Юла-Уалкера.
Из соотношения, связывающего параметры АРСС-модели с порядком авторегрессии p и скользящего среднего q:
Поскольку полагается, что u[k] - белый шум, то
,
, m>q
, m<0
В частном случае для авторегрессионных параметров, получаем :
,
, m=0
, m<0
В матричном виде эти соотношения выглядят следующим образом :
Таким образом, если задана автокорреляционная последовательность для , то АР-параметры можно найти в результате решения последнего матричного соотношения (называемого нормальными уравнениями Юла-Уалкера), где автокорреляционная матрица является и теплицевой, и эрмитовой.
Наиболее очевидным подходом к авторегрессионному оцениванию является решение нормальных уравнений Юла-Уалкера, в которые вместо значений неизвестной автокорреляционной функции подставляем их оценки. Результаты экспериментов с этим, первым методом АР-оценивания и сравнение с другими методами этого класса приведены в соответствующем разделе.
1.4.3. Методы оценивания коэффициентов отражения.
Рекурсивное решение уравнений Юла-Уалкера методом Левинсона связывает АР-параметры порядка p c параметрами порядка p-1 выражением :
, где n=1,2,..p-1
Коэффициент отражения определяется по известным значениям автокорреляционной функции :
, где
Из всех величин только непосредственно зависит от автокорреляционной функции. В разное время предлагалось несколько различных процедур оценки коэффициента отражения, рассмотрим некоторые из них.
1.4.3.1. Геометрический алгоритм.
Ошибки линейного предсказания вперед и назад определяются соответственно следующими выражениями:
Рекурсивные выражения, связывающие ошибки линейного предсказания моделей порядков p и p-1, определяются простой подстановкой и в рекурсивное соотношение для авторегрессионных параметров:
Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :
Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :
Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка
Окончательный вид выражений геометрического алгоритма :
, где n=1,2,..p-1
,
, где
1.4.3.2. Гармонический алгоритм Берга.
Алгоритм Берга идентичен геометрическому, однако оценка коэффициента отражения находится из других соображений, а именно : при каждом значений параметра p в нем минимизируется арифметическое среднее мощности ошибок линейного предсказания вперед и назад (то есть выборочная дисперсия ошибки предсказания):
Приравнивая производные к нулю, имеем оценку для :
Некоторым обобщением является взвешивание среднего квадрата ошибки предсказания для уменьшения частотного смещения, наблюдаемого при использовании базового метода Берга:
что приводит к следующей оценке :
1.4.4. Оценивание линейного предсказания по методу наименьших квадратов.
Налагая ограничения на авторегрессионные параметры, с тем чтобы они удовлетворяли рекурсивному выражению метода Левинсона, в методе Берга происходит минимизация по одного параметра - коэффициента отражения . Более общий подход состоит в минимизации одновременно по всем коэффициентам линейного предсказания.
Итак, пусть для оценивания авторегрессионных параметров порядка p используются последовательность данных .Оценка линейного предсказания вперед порядка p для отсчета будет иметь форму:
где - коэффициенты линейного предсказания вперед порядка p.
Ошибка линейного предсказания :
В матричном виде это выражение записывается как :
и соотношение для ошибки :
Однако если рассматривать, в котором минимизируется следующая, невзвешенная выборочная дисперсия :
то матрица принимает теплицевый вид (далее ее будем обозначать ).
Нормальные уравнения, минимизирующие средний квадрат ошибки имеют следующий вид:
Элементы эрмитовой матрицы имеют вид корреляционных форм
, где
Таким образом, авторегрессионные параметры могут быть получены в результате решения нормальных уравнений. Рассмотрим алгоритм, который в решении нормальных уравнений учитывает тот факт, что эрмитова матрица получена как произведение двух теплицевых и в результате этого сводит количество вычислений к . При использовании алгоритма Холецкого потребовалось бы операций.
Ошибки линейного предсказания вперед и назад p-ого порядка
Здесь вектор данных , вектор коэффициентов линейного предсказания вперед и вектор линейного предсказания назад определяется следующими выражениями:
, ,
На основе отсчетов измеренных комплексных данных ковариационный метод линейного предсказания позволяет раздельно минимизировать суммы квадратов ошибок линейного предсказания вперед и назад:
,
что приводит к следующим нормальным уравнениям :
,
Введем необходимые для дальнейшего определения :
,
исходя из вида и можно записать :
, ,
где вектор столбцы и даются выражениями :
,
Важными также являются следующие выражения :
Пара векторов-столбцов и определяются из выражений :
Аналогично определяются вектора и , а также и через матрицы и .