Видеоусилитель

При построении широкополосных усилителей на биполярных транзисторах основное внимание уделяют их частотным свойствам, позволяющим при заданном коэффициенте усиления одного каскада в области средних частот  обеспечить требуемую верхнюю граничную частоту , а, следовательно, и площадь усилителя одного каскада

.                                                             (1.1)

Если многокаскадный усилитель с верхней граничной частотой  содержит  одинаковых каскадов, а искажения на верхних частотах распределены между каскадами равномерно, то связь между  и  устанавливается соотношением

,                                                                   (1.2)

где  - функция, учитывающая уменьшение  с ростом числа каскадов.

Если отдельные однотипные каскады развязаны между собой по постоянному току, что приводит к искажения в области нижних частот, то нижняя граничная частота одного каскада  связана с  всего усилителя соотношением

.                                                        (1.3)

Общий коэффициент усиления N-каскадного усилителя с учетом (1.1) и (1.2)

.                                          (1.4)

Максимальная площадь усиления дифференциального каскада или каскада с общим эмиттером на биполярном транзисторе может быть оценена по формуле

,                                                               (1.5)

где высокочастотный параметр  определяется паспортными параметрами транзистора.

Если заданы  и , то, используя выражение (1.4) и ориентируясь на  максимальную площадь усилителя , можно оценить необходимое количество каскадов усилителя, подобрав , удовлетворяющее условию:

.                                                           (1.6)

Полутора кратный запас по усилению учитывает, в частности, потери сигнала во входной цепи усилителя. Коэффициент  следует брать  - для простейших резистивных каскадов;  - для случая применения во всех каскадах высокочастотной коррекции. Последнее позволяет ослабить требования к частотным свойствам транзистора и обеспечить необходимый коэффициент усиления и заданную полосу пропускания меньшим числом каскадов.

В импульсных усилителях основное внимание уделяется переходным  искажениям, в частности, времени установления усилителя . Для усилителя из  однотипных каскадов  связано с требуемым временем установления  каждого из каскадов соотношением

.                                                            (1.7)

Формула (1.7) справедлива, если величина относительного выброса на один каскад не превышает критического .

Поскольку усилитель обычно содержит один или несколько одинаковых предварительных каскадов, а также выходной каскад и входную цепь с временем установления соответственно  и , то общее время установления .

Величина общего относительного скалывания и времени запаздывания N-каскадного усилителя определяется соответствующими параметрами каждого каскада и оценивается по формуле

;    .                                        (1.8)

Расчет апериодических и импульсных усилителей

Усиление низкочастотных и импульсных сигналов осуществляется апериодическими усилителями. Типовая схема двухкаскадного резистивного усилителя представлена на Рисунок 1.

Рисунок 1

Элементы усилительного каскада выполняют следующие функции:

-         , ,  обеспечивают выбранное положение рабочей точки (РТ) и температурную стабилизацию транзистора;

-         ,  осуществляют развязку каскада в диапазоне усиливаемых частот и повышают устойчивость работы усилителя;

-          разделяет усилительные каскады по постоянному току;

-          является коллекторной нагрузкой транзистора;

-          устраняет отрицательную обратную связь по переменному току;

-          проводимость потребителя.

При условии слабых сигналов, когда выходное напряжение  существенно меньше напряжения , можно считать, что каскад работает в линейном режиме. В этом случае расчет усилителя сводится к следующему.

Исходными данными для оконечных усилительных каскадов непрерывных сигналов являются:  - коэффициент усиления;  и  - верхняя и нижняя граничные частоты;  и  - уровень линейных искажений на частотах  и ;  и  - проводимость и сопротивление потребителя;  - выходное напряжение.

Расчет производится в следующей последовательности.

1.      Выбирают тип биполярного транзистора, позволяющего реализовать требуемый коэффициент усиления и полосу пропускания при заданных частотных искажениях:

,                                                                 (2.1)

где , .

Определяют параметры транзистора , , , , ,  и  на средней частоте усиления.

2.      Находят нагрузочную коллекторную проводимость  для обеспечения заданного усиления и полосы пропускания:

,                                                      (2.2)

,                                              (2.3)

.                                                             (2.4)

3.      Вычисляют входную проводимость и емкость усилительного каскада.

                                                     (2.5)

                                                       (2.6)

4.      Разделительную емкость  определяют по заданным искажениям  на нижней граничной частоте:

,                                                     (2.7)

где .

5.      И наконец находят емкость :

.                                                                   (2.8)

При расчете усилителей импульсных сигналов с длительностью  задаются обычно временем установления фронта импульса  и его скалыванием . В этом случае элементы схемы  и  находятся из соотношений (2.3) и (2.7):

,                                              (2.9)

.                                                          (2.10)

Особенность расчета промежуточных каскадов заключается в том, что их потребителем является последующий усилитель, входная проводимость  и емкость  которого находятся с помощью выражений (2.5) и (2.6).

При решении ряда задач возникает необходимость усиливать сигналы в широкой полосе частот, и, если полоса пропускания обычного апериодического усилителя оказывается недостаточной, ее стараются расширить, используя ВЧ- и НЧ-коррекции. Частотная коррекция обычно осуществляется одним из двух методов:

1.      введением в цепь коллекторной (стоковой) нагрузки частотно-зависимых элементов (L-коррекция в области ВЧ и цепочка  - в области НЧ);

2.      использованием частотно-зависимой отрицательной обратной связи (ООС) (эмиттерная коррекция в области ВЧ).

Расчет "Y"-параметров транзистора

Основными активными приборами усилительных устройств радиочастотного диапазона являются биполярные и полевые транзисторы. Расчет характеристик усилителей умеренно высоких частот удобно проводить по Y-параметрам транзисторов, определенным для выбранной рабочей точки (РТ) по постоянному ток и схемы включения (ОЭ, ОБ, ОК, ОИ, ОЗ, ОС).

В инженерной практике широко используется физическая эквивалентная  схема биполярного транзистора, представленная на Рисунок 2, которая достаточно  точно отражает его свойства в частотном диапазоне до , где  - граничная частота усиления тока базы в схеме с общим эмиттером (ОЭ).

Рисунок 2

Рассчитывают элементы эквивалентной схемы и Y-параметры биполярного транзистора по справочным данным, где для типового режима работы (заданной РТ) обычно приводятся следующие электрические параметры:

-          - постоянное напряжение коллектор-эмиттер;

-          - постоянный ток коллектора;

-          - статический коэффициент усиления тока базы в схеме с ОЭ.

-          - модуль коэффициента усиления тока базы на частоте  или .

-          - постоянная времени цепи обратной связи , где  - технологический параметр, лежащий в пределах 3…4 для мезатранзисторов и 4…10 для планарных;

-          - емкость коллекторного перехода.

Элементы эквивалентной схемы определяется с помощью следующих соотношений.

Дифференциальное сопротивление эмиттерного перехода :

.                                                                 (3.1)

Параметр , характеризующий активность транзисторов:

.

Сопротивление растекания базы :

.                                                                     (3.2)

Дифференциальное сопротивление эмиттерного перехода :

.                                                       (3.3)

Емкость эмиттерного перехода :

.                                                               (3.4)

Собственная постоянная времени транзистора :

.                                                              (3.5)

Для удобства часто пользуются расчетами активных и реактивных составляющих проводимостей по формулам, максимально использующим данные транзисторов. При этом предварительно вычисляют входное сопротивление в схеме ОБ на низкой частоте:

,                                                             (3.6)

и граничную частоту по крутизне

.                                                                 (3.7)

Вводя обозначения  и , расчет Y-параметров ведут по следующим формулам:

,                    ;                                                         (3.8)

;                                           (3.9)

,                     ;                                                  (3.10)

;                       (3.11)

,                     ;                                                     (3.12)

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать