Акустические свойства полупроводников

Акустические свойства полупроводников




Министерство образования и науки Украины






Донецкий политехнический техникум





Кафедра физики

Реферат:





Акустические свойства полупроводников








Выполнил: Филенко М.С.


Проверил: Семенов А.И.











Донецк, 2002




План

1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПОЛУПРОВОДНИК

2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА

3. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ ПРИ УСИЛЕНИИ ЗВУКА

4. УСИЛЕНИЕ АКУСТИЧЕСКИХ ШУМОВ И СВЯЗАННЫЕ С ЭТИМ ЯВЛЕНИЯ

5. ЗВУКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

6. Заключение

 


1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ

ПОЛУПРОВОДНИК

Мы уже говорили, что в полупроводниках имеет смысл изучать в первую очередь те акустические эффекты, которые обусловлены взаимодействием звука с электронами проводимости. Ведь именно небольшое число электронов проводимости отличает полупроводник от диэлектрика. Типичные концентрации электронов в тех случаях, которые нас будут интересовать, составляют 1011 - 1016 см-3.

Рассмотрим акустические эффекты только в одном типе полупроводников, а именно в пьезоэлектрических полупроводниках. Акустические эффекты в них наибо­лее ярко выражены, лучше и подробнее всего исследо­ваны.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла. Пояс­ним это на модели ионной решетки, изображенной на рис. 1,а. На этом рисунке положительные попы закрашены. а отрицательные изображены светлыми кружка­ми. Видно, что если эту решетку подвергнуть однород­ной деформации, то она не поляризуется  (рис. 1,б). Рассмотрим теперь решетку, изображенную на рис, 2,а. Если эту решетку подвергнуть деформации растяжения в направлении, указанном стрелкой, то она поляризует­ся, поскольку «центры тяжести» положительных и отри­цательных ионов при этом сдвигаются друг относитель­но друга (рис. 2, б, в). Наоборот, если поместить такую решетку в однородное электрическое поле, она деформируется. Деформация кристалла, пропорциональная приложенному электрическому полю, называется прямым пьезоэлектрическим эффектом; возникновение электри­ческой поляризации при деформации — обратным пье­зоэлектрическим эффектом.



Пьезоэлектрический эффект   существует в целом ряде полупроводников — CdS, Zn0, GaAs, InSb, Те и др. Большинство опытов, в особенности на первом эта­пе, было проведено на CdS — этот полупроводник яв­ляется довольно сильным пьезоэлектриком и в то же время фотопроводником (т. е. изменяет свою проводи­мость при освещении). Поэтому в нем, как уже говорилось, легко можно отделять электронные эффекты.

Если в пьезоэлектрике распространяется звук, т. е. волна деформации, то она сопровождается электриче­скими полями, обладающими пространственной и вре­менной периодичностью звуковой волны. Эти поля про­дольные, т. е. параллельные направлению распростра­нения звука. Можно сказать, что в пьезоэлектриках всякая звуковая волна сопровождается волной продоль­ного электрического поля (мы его будем называть пьезоэлектрическим полем). В качестве оценки напря­женности этих полей можно привести следующую циф­ру: при распространении звука в таком сильном пьезо­электрике, как CdS, при плотности потока звуковой энергии S порядка 1 Вт/см2 амплитуда напряженности переменного поля может достигать нескольких сотен вольт на сантиметр.

Выясним теперь, как влияет пьезоэлектрический эф­фект на распространение звука в пьезодиэлектриках. Пусть продольный или поперечный звук распространя­ется в пьезодиэлектрике вдоль оси симметрии кристал­ла, которую назовем осью ОХ. Деформация в такой волне характеризуется  величиной du/dx, где и{х) — смещение точки кристалла в звуковой волне. В непьезоэлектрическом кристалле при такой деформации воз­никает упругое напряжение S:


 

S = λ du/dx



где К — модуль упругости. Это соотношение выража­ет известный закон Гука. В пьезоэлектрике, как мы ви­дели, при деформации возникает дипольный момент, на который действует электрическое поле Е. В резуль­тате при наличии поля Е в пьезоэлектрнке упругое на­пряжение равно:

S = λ du/dx + βE    (1)

где β — так называемый пьезоэлектрический модуль. Кроме того, при деформации в пьезоэлектрике возника­ет дополнительная поляризация. Соответственно в обычном соотношении, связывающем электрическую ин­дукцию D с напряженностью поля Е (D=εE, где ε — диэлектрическая   проницаемость), появляется допол­нительный член — 4лβ du/dx.

Для вычисления скорости звука в пьезодиэлектрике достаточно соотношение (1) и соотношение между D и Е подставить в уравнение теории упругости:

 

ρ d2u/dt2 = ds/dx

 (ρ — плотность кристалла) и в уравнение Пуассона dD/dx = 0 (диэлектрик!). В результате несложных преобра­зований получается величина:

 


ωd = √ λ ⁄ ρ   *  (1 + χ)½ , χ = 4πβ²/ελ      (2)


Первое слагаемое в выражении для ωd дописывает вклад от близкодействующих упругих сил, которые су­ществуют и в непьезоэлектриках. Второе обусловлено .дополнительными квазиупругими  силами, связанными с пьезоэлектрическими полями. Таким образом, роль пьезоэлектрического  эффекта определяется величиной χ , которую мы назовем коэффициентом пьезоэлектриче­ской связи. В большинстве известных пьезоэлектриче­ских полупроводников χ не превышает 0,1. Поэтому ве­личину χ можно считать малым параметром теории, что мы и будем делать в дальнейшем. Так, вместо (2) имеем:

 


ωd = ω0(1 + χ/2), ω0 = √ λ ⁄ ρ


Обратимся  теперь к пьезополупроводникам. Как взаимодействуют электроны проводимости с пьезоэлек­трическим полем? Предположим сначала, что звук «замер» — созда­на периодическая в пространстве статистическая де­формация:

u(x) = u0 cos qx.


В пьезодиэлектрике из уравнения Пуассона мы сразу бы получили: E = 4πβ du/dx ε. Электрический потенциал поля φ был бы при этом равен (Е = — dφ/dx).


φ0 = 4πβu / ε

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с по­тенциальных «горбов» и заполнить  потенциальные «ямы». При этом уменьшится первоначальный потенциал (φ0, или, как говорят, произойдет его экранирование электронами проводимости. Поэтому  первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала и каким образом они его бу­дут экранировать? Для решения этого вопроса следу­ет выяснить, как нужно описывать движение электро­на в поле звуковой волны. Это существенно зависит от того, какова величина соотношения   между длиной звуковой волны 2л/q и длиной l свободного пробега электронов — какова величина параметра ql. Этот па­раметр играет центральную роль в теории акустических свойств проводников; при различных   его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого слу­чая. В чистых металлах при низких температурах мо­жет выполняться противоположное   неравенство. Об этом пойдет речь в следующей главе.

Условие ql «1 означает, что на расстояниях поряд­ка длины звуковой волны электрон успевает много раз столкнуться. В процессе столкновений устанавливается равновесное   распределение электронов — электроны лишены индивидуальности, и их можно описывать как объемный заряд, характеризуемый электропроводно­стью о и коэффициентом диффузии D. В результате плотность тока j можно записать в виде:

j = σ (- dφ/dx) – e D dn/dx


где n — концентрация электронов. В стационарном состоянии плотность тока j в отсутствие внешнего электрического поля должна обращаются в нуль. Потому

n – n0 = - σφ / e D ,


где n0 - равновесная концентрация электронов. Если это выражение подставить в уравнение Пуассона, имеющее в полупроводнике вид:


dD/dx = 4π(n – n0)e ,


и использовать выражение для D, то сразу получим:


φ = φ0 (qR)2 / (1 + ((qR)2)            (3)


Здесь - радиус экранирования Дебая — Хюккеля, равный


R = √ εD/4πσ    =  √ εκΤ/4πe²n0       (4)


(Τ — температура, κ постоянная Больцмана).

Таким образом видно, что степень экранирования пьезоэлектрнческого  потенциала определяется соотно­шением между длиной волны 2π/q и радиусом экрани­рования R.. Обычно говорят о дебаевском экранирова­нии, когда речь идет, например, о кулоновском поле иона: поле «голого» заряда 1/r в результате экраниро­вания приобретает вид:  1/r ехр(- r / R ), В данном же

случае речь идет об экранировании  пространственно-периодического  потенциала. При qR «1 устанавлива­ется почти полное экранирование, и φ « φ0. Наоборот при qR »1 перераспределение электронов в простран­стве почти не реагирует на коротковолновый звук. Со­отношение (3) можно понять еще и следующим обра­зом. В стационарном состоянии имеет место равнове­сие тока проводимости (вызванного наличием поля) и диффузионного тока (вызванного перераспределением электронов в пространстве). Поэтому электроны пере­распределяются тем в большей степени, чем больше от­ношение электропроводности к коэффициенту диффу­зии (т. е. чем меньше R при заданной величине q). В свою очередь, чем больше электронов перераспредели-

лось в пространстве, тем более эффективно экранирование затравочного потенциала φ0.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать