Акустические свойства полупроводников

Электрические  свойства пьезополупроводника оказываются  в таком состоянии резко анизотропными. Средний ток в направлении распространения звука в широком интервале полей не зависит от поля и равен en0ω (все электроны проводимости увлекаются вол­ной). В то же время проводимость полупроводника в поперечном направлении  почти не изменяется в при­сутствии звука.

Рассмотрим теперь основной вопрос, ради которо­го мы начали обсуждать нелинейные эффекты,— как будет вести себя коэффициент усиления в случае больших звуковых амплитуд.

Согласно линейной теории усиления звука, его ам­плитуда, как уже говорилось, возрастает беспредельно. Ясно, что реально усиление беспредельным быть не мо­жет, так как в конце концов око бы вызвало разруше­ние кристалла. В действительности, однако, этого обыч­но не происходит - начиная с некоторого значения амплитуды коэффициент усиления начинает убывать и обращается в нуль. При этом в кристалле образуется так .называемая стационарная волна — периодическая волна несинусоидальной формы, которая распространяется, не усиливаясь и не затухая. .  Как правило, одних только электронных эффектов для образования стационарных волн недостаточно. Эти (волны могут возникнуть лишь в результате совместно-то действия решеточного поглощения и электронного усиления. Если при определении значений дрейфового ноля звук малой амплитуды усиливается, значит элект­ронный коэффициент усиления превышает коэффици­ент решеточного поглощения. Но эти два коэффициен­та по-разному зависят от амплитуды: в большинстве представляющих интерес случаев электронное усиление убывает, а решеточное поглощение возрастает.

На первый взгляд может показаться, что поскольку мы не учитываем нелинейные упругие свойства кристал­ла, в теории не должна возникать нелинейность реше­точного поглощения. Однако это не так. Решеточное поглощение связано со взаимодействием звуковой вол­ны с тепловыми колебаниями решетки. Его можно описать, вводя в уравнения теории упругости эффективную силу, действующую на решетку. Структура этой силы аналогична структуре силы вязкого трения в жидко­сти — она пропорциональна третьей производной сме­щения по координате. В связи с этим основной вклад в решеточное поглощение дают области резкой зави­симости смещения от координаты — области вблизи дна потенциальных ям, где электроны сильно взаимо­действуют со звуком. С ростом амплитуды звука раз­мер этих областей, как мы уже видели (см. рис. 8), уменьшается — излом становится более резким. Сле­довательно, решеточное поглощение   возрастает. При некоторой амплитуде электронное усиление сравнива­ется с решеточным поглощением — это и есть амплиту­да стационарной волны.

Исследование образования стационарных волн и зависимости их амплитуды от электрического поля и других параметров позволяют ответить на важный вопрос» .какое максимальное усиление звука можно получить описанным путем?.



4. УСИЛЕНИЕ АКУСТИЧЕСКИХ ШУМОВ И СВЯЗАННЫЕ С ЭТИМ ЯВЛЕНИЯ

Уже в первых опытах по усилению звуковых сигналов наблюдалось  также усиление звуковых шу­мов, т. е. тепловых звуковых флуктуаций, всегда суще­ствующих в кристалле.: В ходе эксперимента было видно, как их интенсивность нарастает и в конце концов 'начинает препятствовать   усилению полезного сигна­ла. Таким образом, вначале шумы возникли как пара­зитный эффект, с которым надо было бороться. Впо­следствии, однако, оказалось, что их изучение представ­ляет  самостоятельный физический интерес, и нема­лый. А сейчас, пожалуй, этому вопросу посвящено боль­шее число работ, чем любой другой проблеме, связан­ной с усилением звука в полупроводниках.

Проблема   усиления шумов в пьезополупроводниках очень сложна и к настоящему времени полностью не решена. Поэтому здесь мы обсудим лишь главные особенности усиления шума и основные возникающие вопросы.

Как происходит усиление шума? Мы видели, что вследствие анизотропии пьезоэлектрического взаимо­действия и скорости звука коэффициент усиления зву­ка зависит от направления его распространения. Обыч­но (хотя и не всегда) опыт ставят так, что усиление максимально, когда звук распространяется в направле­нии дрейфа электронов (звук, распространяющийся под углом, усиливается меньше). Только такую геометрию мы здесь и будем обсуждать.

Мы видели, что коэффициент усиления звука имеет максимум на частоте ω0, которая пропорциональна  √ n0

Интенсивность шумов растет по мере удаления от края кристалла. Быстрее всего нарастает интенсивность тех звуковых волн, которые распространяются вдоль направления дрейфа и имеют частоту о),„. Поэтому по мере удаления от края кристалла и угловое и частот­ное распределения интенсивности шумов обостряются. .Спектр акустических шумов в разных точках кристалла схематически изображен на рис. 12.

Таким образом, шумы усиливаются в очень узком угловом и частотном интервале. Однако в этом интерва­ле общее усиление чрезвычайно велико. Так в одном из опытов оно на длине кристалла составляло 108.

В процессе усиления интенсивность шумов возрас­тает настолько, что их уже нельзя считать независимы. ми. Возникает состояние, до некоторой степени напо­минающее гидродинамическую турбулентность, В этом состоянии движение имеет беспорядочный, хаотический характер, и большую роль играет взаимодействие от­дельных шумовых компонент.

Что же происходит в таком состоянии? По какому закону растет интенсивность  шумов в пространстве. Да и растет ли она? Каков спектральный состав шу'. мо.в? Есть ли максимум вблизи одной частоты, а если есть, то вблизи какой? И как формируется это состоя­ние, какие взаимодействия играют в нем главную роль?

На большинство этих вопросов сейчас не существует однозначного ответа. Но кое-что все-таки уже известно, и мы об этом сейчас расскажем.

Оказалось, что определяющую роль в формировании акустического турбулентного состояния, как пра­вило, играют коллективные движения электронов полу. проводника. Что же это такое? Хорошо известен один тип таких коллективных движений — плазменные коле­бания. Это колебания электронной  плотности, период которых намного меньше времени свободного пробега электронов проводимости. Между тем со звуковыми шумами могут взаимодействовать только медленные дви­жения с характерным временем, сравнимым с период дом звука (т. е. значительно превышающим время сво­бодного пробега электронов проводимости). Какие это движения?

Представим себе, что в некоторой области полупроводника возник сгусток электронов (электронная кон­центрация немного превышает среднюю). Этот сгусток будет рассасываться как из-за диффузии электронов так и из-за расталкивания кулоновскими силами. Таким образом, это не колебательное, а периодическое, чисто релаксационное движение. И в полупроводнике возможны процессы, при которых сливаются две аку­стические волны л возникает не третья волна, а такое быстрозатухающее движение.

Важно, что процессы с участием движений элект­ронной  плотности происходят, вообще говоря, чаще других возможных процессов, т. е. именно они преоб­ладают в условиях акустической турбулентности. В ре­зультате таких процессов   образуется своеобразный «фон» движений электронной  концентрации, рождающихся при слиянии усиленных шумовых компонент и ^быстро затухающих. Эти движения изменяют макроскопические (средние) свойства среды и, в частности, коэффициент усиления шумов — возникает добавка к ко­эффициенту усиления,  пропорциональная   интенсив­ности шума. В результате усиление шума становится нелинейным.

Характеристики   турбулентного состояния опреде­ляются, естественно, свойствами нелинейного коэффици­ента усиления. Расчеты показывают, что нелинейный .коэффициент усиления имеет максимум на более низ­кой частоте, чем линейный. В результате спектр шумов в процессе усиления смещается в область более низких частот — взаимодействие шумов через посредство дви­жений электронной концентрации   приводит к «пере­качке» энергии в эту область. Такая перекачка неодно­кратно наблюдалась на опыте.

Возникает очень интересный вопрос: а возможна ли ситуация, в которой спектр шумов сужается в процессе усиления? Нельзя ли таким образом получить из уси­ленного шума когерентный акустический сигнал?

Согласно   теории такой режим усиления в прин­ципе возможен, однако при таких условиях, которые на опыте реализовать совсем не просто. Может быть, по этой причине он до сих пор не наблюдался.

Расскажем еще об одном своеобразном   проявле­нии турбулентного состояния. В этом состоянии неред­ко наблюдаются так называемые акустоэлектрические домены. Это — сгустки акустических шумов (ограни­ченные в пространстве волновые пакеты), периодически пробегающие по кристаллу. Поскольку такие домены «захватывают» электроны проводимости, при этом наб­людаются осцилляции тока в цепи, в которую включен

образец. Таким образом, полупроводник работает как' генератор периодических электрических импульсов.

В целом задача об усилении шумов далеко не про­ста. К настоящему времени удалось построить лишь теорию так называемой слабой турбулентности, когда интенсивность выросших шумов еще достаточно мала. Уже эта теория имеет весьма сложный вид.

С другой  стороны, достигнуты серьезные успехи в экспериментальном  изучении акустической турбулент­ности в полупроводниках. В последние годы появилась экспериментальная техника, очень удобная для иссле­дования поведения шумов. Это — изучение рассеяния света на усиленных акустических шумах. С помощью этой техники удается изучать распределение волн как по направлениям распространения, так и по частотам в любой точке кристалла. Таким образом, можно полу­чить весьма детальные сведения о нарастании акусти­ческих шумов. В связи с этим и в нашей стране и за рубежом сейчас ведется очень много работ по изуче­нию поведения звуковых шумов в полупроводниках.

.Состояние, о котором мы сейчас рассказали, является во многих отношениях уникальным, а с теоретиче­ской точки зрения — далеко не полностью понятым. Поэтому нам кажется, что дальнейшее его изучение может оказаться исключительно благодарным делом, потому что именно здесь в будущем можно ожидать наиболее интересные находки и открытия.

5. ЗВУКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

До сих пор мы говорили о поглощении и усилении звука электронами проводимости. Есть, одна­ко, интересный эффект, о котором уже вкратце упоми­налось, связанный с обратным влиянием звуковой вол­ны на электроны, - звукоэлектрический эффект.

Бегущая звуковая волна увлекает за собой электро­ны проводимости, в результате чего, если замкнуть об­разец проводником, в' цепи потечет звукоэлектрический ток. Если же образец разомкнут, то на его концах воз­никнет разность потенциалов, а внутри его — звукоэлектрическое поле Езв. Оценить его можно из следующих соображений.

В процессе  поглощения звука электронам, заклю­ченным в единице объема, в единицу времени передается энергия ГS. Импульс, передаваемый при этом электронам, есть ГS/ω. С другой стороны, эта величина должна быть равна силе, действующей на эти элек­троны со стороны звукоэлектрнческого поля - en0 Езв. В итоге получается следующая оценка:



Езв = ГS/en0ω     (9)


Соответственно звукоэлектрический ток равен:

jзв = σ Езв = μГS/ω    (10)

Это соотношение легко понять качественно — чем больше поглощение звука, тем больший импульс пере­дается от звука электронам н тем больше электронный ток.

Звукоэлектрический эффект   в пьезополупроводниках имеет очень большую величину — при интенсивности звука 0,1 Вт/см2 звукоэлектрическое поле может достигать 15—20 В/см. Поэтому звукоэлектрический эф­фект может быть использован как весьма чувствитель­ный индикатор наличия звуковых волн в кристалле и измеритель их интенсивности.

Соотношения (9) и (10) остаются справедливыми и во внешнем электрическом поле, когда в полупровод­нике наряду со звукоэлектрическим током течет та«же ток проводимости. Поэтому при пороговом значении электрического поля, когда поглощение звука сменяет­ся его усилением, изменяет знак и звукоэлектрическое поле. Такую перемену знака легко понять физически: когда дрейфовая скорость электронов превышает ско­рость звука, звуковая волна уже не увлекает систему электронов, а тормозит ее как целое. Изменение знака звукоэлектрического  эффекта 'неоднократно наблюда­лось на опыте.

А что произойдет, если направление, в котором рас­пространяется звук в кристалле, изменить на противо­положное? На первый взгляд кажется, что при этом (в отсутствие внешнего электрического поля) изменится лишь знак звукоэлектрического поля Езв. Тут можно рассуждать так: одновременно с изменением направ­ления распространения звука   повернем мысленно и сам кристалл на 180°. Повернутый кристалл совпадает с исходным, и по существу ничего не изменилось. Это )рассуждение действительно подходит для полупроводника, кристаллическая решетка которого имеет центр симметрии. Мы же видели, что кристаллические решет­ки пьезополупроводников не имеют центра симметрией.

Поэтому в них при изменении направления распространения звука на противоположное может изменяться не только знак, но и величина Езв. Иными словами, звукоэлектрический эффект содержит четную и нечетную .части: первая не изменяется при изменении направления распространения звука, а вторая изменяет свой знак. Четный звукоэлектрический эффект также наблю­дался на опыте.

Звукоэлектрический эффект  проявляется как при распространении звуковых сигналов, так и при усиле­нии шумов. Он играет важную роль в формировании акустоэлектрических  доменов, о которых говорилось выше.

Исследования   звукоэлектрического   эффекта ве­дутся весьма активно, так как с их помощью можно непосредственно  изучать электронные свойства полу­проводников.


Заключение

Мы рассмотрели ряд явлений, сопровождающих распространение ультразвука в полупроводниках

и металлах. Начав с простых эффектов, мы подошли к сложным проблемам, находящимся на переднем крае современной физики твердого тела. В силу ограничен­ности объема книги мы не смогли коснуться целого ря­да интересных вопросов. Так, мы не рассматривали не­линейных акустических явлений в металлах в магнит­ном поле, опустили очень интересный вопрос об особен­ностях распространения звука в сверхпроводниках. Не обсуждался также случай очень высокочастотного и ин­тенсивного звука, приводящего к квантованию движе­ния электронов в поле деформаций звуковой волны. Все эти вопросы в настоящее время изучаются, и в ближайшие годы мы надеемся узнать много нового об акустических свойствах твердых тел.

Можно надеяться, что эта область физики твердо­го тела будет интенсивно развиваться еще в течение целого ряда лет. А это значит, что, кроме перечислен­ных, здесь должны возникнуть и новые проблемы, по­явление которых пока предугадать нельзя, но постанов­ка и решение которых составят основное содержание этой области в ближайшем будущем.


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать