Сила и направление ветра в различных зонах по-разному изменяются в зависимости от высоты над поверхностью Земли. Так, на экваторе близко к земной поверхности расположена зона с относительно небольшими и переменными по направлению скоростями ветра, а в верхних слоях возникают достаточно большие по скорости воздушные потоки в восточном направлении. На высоте от 1 до 4 км от поверхности Земли, в зоне между 30° северной и южной широт образуются достаточно равномерные воздушные течения, называемые пассатами. В северном полушарии ближе к поверхности Земли их средняя скорость составляет 7 — 9 м/с.
Вокруг зоны пониженного давления образуются крупномасштабные циркуляции воздушных масс — в северном полушарии против направления движения часовой стрелки, а в южном — по направлению ее движения. Вследствие наклона 23,5° оси движения Земли к плоскости ее вращения относительно Солнца происходят сезонные изменения тепловой энергии, получаемой от него, величина которых зависит от силы и направления ветра над определенной зоной земной поверхности. 36
На относительно большой высоте над поверхностью Земли (в среднем 8-12 км) в тропосфере возникают достаточно равномерные и мощные воздушные течения, получившие название струйных. Их образование вызвано особенностями высотной атмосферной циркуляции, поэтому характеристики струйных течений существенно отличаются от параметров приземного ветра.
Размеры струйных течений в поперечнике достигают 400-600 км, а протяженность - др 1000 км. Обычно они не подвержены большим сезонным изменениям, но могут менять свое расположение по высоте. Так, над Восточной Сибирью и Чукоткой они иногда опускаются до высоты 3-4 км от поверхности Земли. Скорости воздушных масс в ядре струйного течения составляют 30-80 км/ч, но часто доходят до 200 км/ч.
Таким образом, тепловая энергия, непрерывно поступающая от Солнца, преобразуется в кинетическую энергию движения в атмосфере огромных масс воздуха, циркуляция которых и называется ветром.
ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕТРА
Ветер является одним из наиболее мощных энергетических источников, который издавна используется человеком, и при благоприятных условиях может быть утилизован в интересах народного хозяйства в значительно больших масштабах, чем это имеет место в настоящее время. По ориентировочным оценкам, энергия,'которая непрерывно поступает от Солнца, соответствует суммарной мощности, превышающей 1011 ГВт. Это определяет возможную годовую выработку энергии ветроагрегатами, равную 1,18 • 1013 кВт -ч, что во много раз превышает количество энергии, потребляемой сегодня в мире. По оценкам МИРЭК, ежегодно в мире потребляется около 3 млрд. т условного топлива. В развитых странах потребление достигло 0,6 т условного топлива в год на одного человека, в развивающихся - в 3 раза меньше.
Энергетические установки обычно используют ветер в приземном слое на высоте до 50 - 70 м, реже - до 100 м от поверхности Земли, поэтому наибольший интерес представляют характеристики движения воздушных потоков именно в этом слое. В дальнейшем, по мере создания соответствующих технических средств, могут оказаться практически ценными также струйные течения, характерные для тропопаузы.
Важнейшей характеристикой, определяющей энергетическую ценность ветра, является его. скорость. В силу ряда метеорологических факторов (возмущения атмосферы, изменения солнечной активности, количества тепловой энергии, поступающей на Землю, и других причин), а также вследствие влияния рельефных условий непрерывная длительность ветра в данной местности, его скорость и направление изменяются по случайному закону. Поэтому мощность, которую может вырабатывать ветро-установка в различные периоды времени, удается предсказывать с очень малой вероятностью. В то же время суммарную выработку агрегата, особенно за длительный промежуток времени, можно рассчитать с высоким уровнем достоверности, так как средняя скорость ветра и частота распределения скоростей в течение года или сезона изменяются мало.
Единицами измерения скорости в СССР являются метр в секунду (м/с) и километр в час (км/ч), за рубежом применяют также миля в час(1 миля/ч = 0,44 м/с). Направление вектора скорости измеряется в градусах или румбах и показывает его угловое положение относительно направления (обычно северного), принятого за начало отсчета.
Для измерения мгновенной скорости ветра, т.е. пути воздушного потока, пройденного им за промежуток времени, измеряемый секундами или даже долями секунд, пользуются анемометрами различных конструкций. Чем меньше интервал времени усреднения скорости, тем менее инерционным должно быть ветроприемное устройство анемометра. Поэтому для подобных измерений используют специальный класс приборов - малоинерционные.
Усредненную за более длительные промежутки (несколько десятков секунд или минут) скорость потока измеряют анемометрами и интегрирующими устройствами разнообразных типов, которые имеют также приборы для получения визуальных отсчетов и регистрирующую часть, обеспечивающую запись скоростей на ленту. Погрешность измерения скорости анемометром может доходить до 5 —7%, поэтому в тех случаях, когда требуется большая точность, например при испытаниях в аэродинамической трубе ветродвигателей и их моделей, используют трубку Пито, соединенную с микроманометром. На некоторых метеостанциях наряду с анемометром иногда еще используют флюгер Вильда, но он не дает требуемой точности измерений скорости, и практически для получения данных с целью проведения энергетичееких расчетов он непригоден.
Мгновенная скорость ветра часто определяет динамическое воздействие воздушного потока на ветродвигатель. Динамические характеристики потока, его порывы влияют на работу автоматических систем регулирования и ориентации. Количество энергии, которую может выработать ветроагрегат, зависит в первую очередь от усредненной скорости ветра за определенный интервал времени и по всему сечению потока, равному площади поверхности, ометаемой ветроколесом. Именно эта скорость в основном определяет также режимы работы агрегата.
Средняя скорость ветра v за выбранный промежуток времени Т = t2—t1 определяется отношением суммы измеренных значений мгновенной скорости Vj к числу измерений n:
Среднесуточную скорость vсут находят делением на 24 суммы среднечасовых скоростей v4, а среднегодовую vr — делением на 365 суммы всех
vcyT за год.
Средние значения скоростей в рассматриваемом районе, как правило, определяют по данным наблюдений на метеостанциях, а в ряде случаев — по материалам анеморазведок. В зависимости от категории и класса метеостанции, требований и особенностей объектов, находящихся поблизости от обслуживающих станций, метеорологические сроки наблюдений за скоростью ветра устанавливаются различные. Чаще всего приняты интервалы в 3, 4 или 6 ч с измерениями в определенное время, но на части метеостанций и специальных объектов ведут непрерывную запись скоростей (например, на Московской и других телебашнях, при некоторых аэропортах, в зонах с аномальным ветровым режимом и т.д.) или проводят ежечасные наблюдения.
Класс открытости метеостанции, степень защищенности (затененности препятствиями) анемометра учитывают при измерениях скорости ветра различных направлений (по румбам). Для классификации станций пользуются специальной методикой, предложенной В.Ю. Милевским, которая изложена в литературе по метеорологии. Методика обеспечивает возможность лучшей сопоставимости наблюдений, их репрезентативности для обслуживаемой зоны. На метеостанциях получают и накапливают достаточно точные для практики сведения о среднепериодных скоростях, которые в сравнении с данными, вычисленными по среднечасовым скоростям, дают относительно небольшую погрешность. Надо иметь в виду, что на показания анемометров влияют их расположение, макро- и микрорельеф местности, класс открытости метеостанции. Это следует учитывать при пересчете скоростей для определенной высоты и для каждого конкретного района, где предполагается установка ветроагрегата, даже если он расположен сравнительно недалеко от станции.
Средние скорости ветра меняются в различное время суток, разные месяцы и сезоны. Поэтому рассматривают суточный, месячный и сезонный ход скоростей, определяющий общую тенденцию их изменения в указанные периоды и оценивающий макроструктуру воздушного потока. Предельные значения скоростей ветра, данные об его интенсивности и микроструктура потока в различных точках его поперечного сечения и продольного вектора за относительно короткие интервалы времени являются важными режимными характеристиками ветра, используемыми в расчетах на прочность и долговечность агрегатов, при проектировании механизмов привода, систем регулирования и ориентации, схем совместного использования с другими установками и др.
Важной характеристикой является вертикальный профиль ветра, т.е. изменения его скорости по высоте в приземном слое. Влияние земной поверхности на скорость и направление ветра уменьшается по мере увеличения высоты. Поэтому скорость обычно возрастает, а порывистость и ускорения потока снижаются. Градиент скоростей летом, как правило, меньше, чем зимой, когда вертикальный перепад температур относительно небольшой. При адиабатическом градиенте температуры в нижних слоях атмосферы вертикальный профиль ветра v (К) аппроксимируется зависимостями вида
Важнейшее значение для надежности и долговечности ветроэнергетической установки имеют значения предельных скоростей ветра в зоне. \ Они определяют принимаемые расчетные нормативы при проектировании узлов и конструкций установки на прочность, параметры регуляторов, аэродинамические характеристики лопастей. При определении расчетных значений максимальных скоростей ветра различной вероятности, пользуются формулой Л.С. Гандина и Л.Е. Анапольской
где F(x) — вероятность того, что v превзойдет заданное значение х; (1, у - параметры уравнения, зависящие от характеристик зоны и режимов ветра; е — основание натурального логарифма.
Для оценки относительной скорости ветра в метеорологической практике используют коэффициент, %,
где - — измеренная в определенный час скорость; v - средняя скорость за выбранный промежуток времени; vmax> vmin — экстремальные значения скорости ветра за этот период.
Линии, соединяющие точки на карте, имеющие равные величины К', называются изоплетами.
Энергия Е воздушного потока с поперечным сечением F, Дж:
E = mv2/2.
Секундная масса т воздуха, протекающая со скоростью v через это сечение, кг/с:
m =pFv.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9