Интересно отметить переоценку значения малых цифр КПД, происшедшую за последние полвека. Пятьдесят лет назад теоретическое значение КПД около7% считалось
ничтожным и едва ли заслуживающим внимания. В наше же время строятся мощные океанские энергоцентрали с КПД примерно в половину этой величины. Существенного улучшения КПД можно ожидать только при использовании в океанских тепловых энергоцентралях большего перепада температуры между нагревателем и холодильником. Принципиально такая возможность имеется. В разных районах на дне океана обнаружены места, где разность температуры воды значительно превышает принятые .для расчета 20 °С. Например, в термальных впадинах на дне Красного моря температура воды достигает 60 СС, к тому же она ежегодно несколько повышается. А на дне Тихого океана бьют гидротермальные источники с температурой более 350 °С, как в котле вполне современной ТЭЦ высокого давления. Вблизи от этих горячих источников имеется вода с низкой температурой, пригодная для холодильника. При использовании такой воды возможно получение КПД океанской установки, как у лучших наземных ТЭЦ высокого давления. Однако применение горячих гидротермальных вод для выработки электрической энергии потребует особой технологии.
СИСТЕМЫ ОТЕС
В августе 1979 г, вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная — 53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее — на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.
Три насоса потребовались из следующего расчета: один — для подачи теплой воды из океана, второй — для подкачки холодной воды с глубины около 700 м, третий — для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочей жидкости применяется аммиак,
Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Труба сваривалась на берегу из 58 секций. Выбор полиэтилена связан с тем, что он как будто не подвержен обрастанию и, следовательно коррозии (создание 700-метрового трубопровода было самым трудным делом). Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случае необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба—судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.
Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро достроить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.
ОТЕС-1 — плавучая лаборатория: как и мини-ОТЕС, она не предназначена для коммерческой выработки электрической энергии, хотя ее мощность достигает 1 МВт, т. е. в 20 раз больше, чем у мини-ОТЕС. В качестве вторичного рабочего тела в ОГЕС-1 также применяется аммиак. Питательный насос забирает воду из поверхностного слоя океана с температурой 27 °С и прогоняет ее через нагреватель аммиака, состоящий из 6304 титановых трубок диаметром 2 см. Это — паровой котел установки. Аммиак распыляется в теплых трубках и вскипает. Пар аммиака идет в турбину и вращает ее, а оттуда, совершив работу, поступает в конденсатор — холодильник. Конденсатор также сделан из тонких трубок, охлаждаемых водой с температурой немного более 4 °С. Там пары аммиака конденсируются и превращаются снова п жидкость, перекачиваемую обратно и испаритель. Общая длина трубок в двух теплообменниках (испарителе и конденсаторе) составляет 140 км.
Под установку ОТЕС-1 переоборудован танкер с турбо-электрическим приводом. Электрическая силовая установка танкера позволяет с удобством использовать ее энергетические ресурсы во время проведения различных экспериментов для привода насосов и других целей. На этой установке предполагается проверить некоторые эксплуатационные характеристики ОТЕС, чтобы в дальнейшем их можно было использовать при создании опытного образца. Число вопросов, подлежащих изучению, достаточно велико. К ним относятся, например, следующие. Какого типа теплообменники будут оптимальными и из какого материала их следует делать? Титан — дорог, нельзя ли его заменить на алюминий или что-нибудь другое? Как быстро будут развиваться морские оргаппзмы-обрастатели в теплообменниках и в других частях системы и как с ними бороться? Как повлияют на состояние окружающей морской среды мощные установки такого типа? Как лучше выполнить трубопровод для подъема холодной воды?
Последний вопрос становится традиционным для конструкторов всех установок ОТЕС. Для OTEG-1 он был решен в пользу применения трех параллельных полиэтиленовых труб диаметром 1 м каждая, длиной но 900 м. Трубы были доставлены на Гавайские острова секциями длиной по 27 м и сварены на берегу. Потом все три трубы были связаны вместе и уложены на тележки, установленные на специальном рельсовом пути, спускающемся прямо в океан. Суммарная масса трубопровода достигла 450 т, укладка его на тележки была выполнена с помощью лебедки. Для закрепления нижнего конца трубопровода вблизи дна потребовалось 50 т балласта. А для поддержания трубопровода в вертикальном положении его верхний конец окружен плавучим кольцом, имеющим буй, к которому прикреплен прочный конец; с его помощью трубопровод можно несколько перемещать. Такой способ крепления верхнего конца трубы к днищу судна позволил очень быстро (за 2 часа) произвести постановку трубы в океане. Так же просто происходит и разъединение трубопровода холодной воды с судном, если возникает сильное волнение или по какой-либо друюй причине.
Конструкторы установки ОТЕС-1 ввели между трубопроводом холодной воды и судном новую деталь, которая сделала всю систему более надежной. Речь идет о карданном подвесе трубы к судну. При наличии кардана судно может произвольно качаться на волнах при относительно малоподвижном длинном трубопроводе, если волны не слишком велики (не более 2 м). А если волнение увеличивается, судно отцепляется от трубы и уходит в укрытие.
Защелка для быстрого разъединения судна с трубой была опробована еще в системе мини-ОТЕС. Применением карданного подвеса трубы и защелки решился старый спор судна с трубой, начавшийся еще при Клоде. Надо сказать, что, видимо, труба все же «победит» судно, в том смысле, что новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это — одна грандиозная труба, в верхней части которой находится круглый машинный зал,, где размещены все необходимые устройства для преобразования энергии (рис. 29). Верхний конец трубопровода холодной воды расположится в океане на глубине 25—50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом. Это любопытный эпизод из новейшей истории развития техники преобразования тепла океана.
Намечено окончание строительства новой, третьей по счету, экспериментальной станции ОТЕС, мощность которой будет находиться в пределах 40—100 МВт. При строительстве этой станции используется модульный принцип, она собирается из отдельных блоков по 10 МВт каждый. Такой подход позволит легко наращивать мощность до желательной величины в установленных пределах. Трубопровод холодной воды по-прежнему остается одним из наиболее сложных узлов этой станции. Станции мощностью в 40 МВт требуется трубопровод диаметром 10 м и длиной 900 м. А для проектируемой коммерческой станции OTEG на 400 МВт при той же длине трубопровод должен иметь диаметр 30 м. Каждую секунду насосы через него будут прокачивать около 1500 м3 холодной воды. Столько же потребуется прокачать и теплой воды. Суммарный расход воды в этой мощной установке получится, как v реки Нил, — 2600 м8/с, Полное водоизмещение корпуса станции на 400 МВт с заборной трубой оценивается цифрой около 500 тыс. т. Станция должна устанавливаться в районах океана с глубинами более 1200 м. Для ее удержания в районе постановки требуется якорная система с большой массой. В целом — поистине циклопическое сооружение, строительство его предполагалось начать в 1985 г. Было также сообщение о строительстве станции типа ОТЕС в Японии, но значительно менее мощной.
Рис. 2.3. Один из вариантов станции ОТЕС на мощность в сотни мегаватт
I — платформа, 2 — труба холодной воды, з — якорная система
ТЕПЛО ИЗ ХОЛОДА
Энергию можно получать не только из теплых вод тропических или субтропических районов Мирового океана, но и из крайних северных или южных бассейнов планеты, т. е. из вод Арктики и Антарктики. Была бы только достаточная разность температур для эффективной работы тепловой машины. А разность там обычно есть, и иногда не меньше, чем в тропиках. Но не между слоями поверхностной и глубинной воды, как в тропиках.
Например, в Северном Ледовитом океане температура в поверхностном слое подо льдом близка к 0 °С. Ниже, на нескольких сотнях метров глубины, температура воды немного повышается и доходит примерно до 0,6 °С. Там находится теплый промежуточный слой, образовавшийся за счет притока вод атлантического происхождения. А глубже нескольких сот метров температура воды снова понижается до минус 1 °С. Самая холодная вода встречается в Датском проливе близ Гренландии, где температура ее падает до минус 2,2 °С; такая же холодная вода бывает и в море Уэддела в Антарктике. Где же при подобных условиях взять достаточно высокую разность температур в этих широтах планеты?
На помощь энергетикам приходит холодный воздух.
Во многих районах Арктики большую часть года температура воздуха ниже минус 10 °С. Например, на Новосибирских островах в году бывает всего 2—4 дня с температурой воздуха выше минус 10 °С, на побережье моря Лаптевых таких дней от 10 до 14, а на архипелаге Северная Земля их только 10—12. В остальное время года здесь царствуют морозы, временами значительно превышающие минус 10 °С.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9