Анализ энергоэффективности системы освещения учебных помещений корпуса Т (I этаж)
Реферат
Пояснительная записка 60 с, 7 табл., 18 источников.
Объект исследования - система освещения учебных помещений технического корпуса Т СумГУ (I этаж).
Целью работы является анализ энергоэффективности системы освещения, разработка организационных и технических мероприятий по энергосбережению и их финансовая оценка.
Графические материалы: схема размещения источников освещения с таблицей замеров параметров, плакат организационных и технических мероприятий по энергосбережению и финансовая оценка - всего 2 листа формата А1.
Приведено описание основных показателей освещения, описание осветительных систем административных зданий и применяемое оборудование, описание состояния помещений и системы освещения технического корпуса Т, нормирование освещенности, методика проведения аудита системы освещения и применяемое при этом оборудование, необходимые расчеты экономии электроэнергии в существующих осветительных установках.
Ключевые слова: ОСЕЩЕНИЕ, ОСВЕТИТЕЛЬНАЯ УСТАНОВКА, ФОТОМЕТР, ЭНЕРГОПОТРЕБЛЕНИЕ, МЕРОПРИЯТИЕ, ЭКОНОМИЯ ЭЛЕКТРОЭНЕРГИИ.
Тема работы «Анализ энергоэффективности системы освещения учебных помещений корпуса Т (I этаж)».
Содержание
Техническое задание
Реферат
Введение
1 Показатели освещения
2 Описание осветительных систем административных зданий и применяемое оборудование
3 Описание помещений и состояния системы освещения
4 Нормирование освещения
5 Методика проведения аудита системы освещения
6 Оборудование, необходимое для аудита системы освещения
7 Расчет экономии электроэнергии в действующих осветительных установках
8 Повышение качества и энергоэффективности осветительных установок (Индивидуальное задание)
Выводы
Список используемой литературы
Введение
Создание необходимого светового климата для эффективного восприятия зрительной информации - это основная задача освещения, в том числе и искусственного, электрического.
На цели освещения тратится значительная часть вырабатываемой электроэнергии. В последнем десятилетии ХХ-го века осветительные установки ряда стран потребляли следующую часть вырабатываемой электроэнергии: ФРГ - 9 %, Франция - 11 %, Великая Британия - 12 %, Италия - 13 %, Украина - 13 %, Япония - 18 %, США - 20 %. Поэтому осветительные электропотребители представляют важный объект и поле для экономии энергетических ресурсов [18].
Приведенные цифры не дают представления об эффективности использования электроэнергии на освещение, но показывают насколько значимым является снижение затрат на искусственное освещение при ограниченности и исчерпаемости энергоресурсов, а также ухудшении экологической обстановки. Экономия электрической энергии может быть достигнута как за счет уменьшения установленной мощности, так и за счет уменьшения времени наработки за год. Номинальная мощность осветительного оборудования рассчитывается на стадии ее проектирования исходя из нормированных значений освещенности и качественных характеристик освещения, выбранной системы освещения и принятого способа размещения светильников, начальной световой отдачей используемых комплектов "лампа - пускорегулирующий аппарат (ПРА), коэффициента использования светового потока осветительной установки относительно рабочей поверхности, коэффициента запаса, зависящего от изменения светового потока ламп и КПД светильников во времени, снижения отражающих характеристик поверхностей помещения во времени [10].
1 Показатели освещения
Устройство, предназначенное для превращения электрической энергии в оптическое излучение, называется искусственным электрическим источником излучения. При диапазоне оптических измерений в пределах длин волн от 380 до 760 нм в органах зрения вызывается ощущение света. Если электрический источник вызывает электромагнитные колебания в пределах указанных длин волн, то он называется электрическим источником света [1].
К световым величинам относятся: сил света, световой поток, освещенность, светимость, яркость, световая энергия [12]:
I - сила света, единица измерения - кандела [кд]; 1 кд - это сила света, излучаемая в перпендикулярном направлении с поверхности черного тела площадью 1/6×10-5 м2 при температуре затвердевания платины (Т=2045 °К) и давлении 101325 Па;
Ф - световой поток - эффективный поток излучения, определяемый спектральной чувствительностью глаза, единица измерения - люмен [лм]; для точечного источника характеризуется силой света, 5 равномерно распределенной в пространственном угле в стеррадиан, ;
Е - освещенность - плотность светового потока по освещаемой поверхности, Е = Ф / S, единица измерения - люкс [лк];
М - светимость - плотность светового потока, проходящего через поверхность или отраженного от нее, единица измерения - люмен на квадратный метр [лм/м2];
L - яркость - плотность силы света по площади проекции излучаемого (отражающего) тела в заданном направлении, единица измерения - кандела на квадратный метр [кд/м2];
Q - световая энергия, определяемая произведением светового потока на время его действия, единица измерения - люмен на секунду [лм*с].
Показателем эффективности любого источника света является его светоотдача, чем больше ее численное значение, тем более эффективен источник света. Светоотдача представляет собой отношение светового потока источника света к потребляемой мощности, Н=Ф / Р, единица измерения - люмен на ватт [лм/Вт].
К качественным показателям освещения относятся: показатель ослепленности, показатель дискомфорта, спектральный состав излучения, цветовая температура, цветопередача, пульсация светового потока [10].
Показатель ослепленности - величина, характеризующая уровень ухудшения видения при появлении в поле зрения резко контрастной яркости.
Показатель дискомфорта - субъективная количественная оценка степени неприемлемости условий освещения при решении неопределенных зрительных задач.
Спектральный состав излучения - совокупность монохроматических световых потоков, генерируемых источником света, дозировка которых определяется физической природой излучателя и режимом излучения.
Цветовая температура - температура черного тела, при которой цветность его излучения совпадает с цветностью излучения реального тела при истинной температуре последнего.
Пульсация светового потока - удвоенные во времени периодические изменения светового потока источника света, питаемого переменным током.
В современных источниках света электрическая энергия преобразуется в основном двумя путями [12]:
0 посредством нагрева тела электрическим током (тепловые методы);
1 посредством электрического разряда в газах и парах металлов (разрядные).
Различают энергетические, светотехнические, электротехнические и эксплуатационные показатели источников света [10]. К энергетическим показателям относятся:
• энергетический к.п.д. лампы hэн.л=Фп.л/Рл ,
где Фп л - полный поток излучения лампы, Вт;
Рл - мощность лампы, Вт;
2
эффективный
к.п.д. потока излучения лампы hэф.л=Фэф.л/Фпл,
где Фэф.л - эффективный поток излучения лампы.
К светотехническим показателям относятся: эффективный поток излучения лампы, светоотдача лампы, спектральный состав излучения лампы, пульсация светового потока.
К электротехническим показателям относятся: номинальная мощность лампы, номинальное напряжение лампы, номинальное напряжение сети, на которое рассчитана лампа.
К эксплуатационным показателям относятся: полезный срок службы, средняя продолжительность работы до изменения одного из ее параметров сверх пределов, установленных стандартом, зависимость основных параметров лампы от отклонений напряжения сети.
Лампы накаливания имеют достоинства: простота конструкции, дешевизна, простота в эксплуатации, хорошая цветопередача, отсутствие мигания, отсутствие пускорегулирующих устройств, являются единственным источником света при напряжениях 12 - 36 В. К недостаткам ламп относится: низкая светоотдача, малый срок службы, высокая чувствительность к изменениям напряжения [8].
Лампы накаливания используются для бытового, местного, аварийного освещения, в помещениях с небольшим числом часов использования.
Люминесцентные лампы низкого давления образуют при работе ионизированные пары металла и газа, производящие ультрафиолетовое излучение, которое с помощью люминофоров на внутренних стенках трубки лампы преобразуется в излучение, ощущаемое глазом [8].
К достоинствам люминесцентных ламп относится относительная простота конструкции, большой диапазон с точки зрения цветопередачи, относительно высокая светоотдача, большой срок службы. К недостаткам можно отнести мигание лампы, старение лампы, наличие пускорегулирующего аппарата (ПРА), малый диапазон мощностей, чувствительность к снижению напряжения, ограниченный температурный диапазон работы (от 5 до 40 °С).
Трубчатые люминесцентные лампы низкого давления с дуговым разрядом в парах ртути по цветности излучения делятся на белого света (ЛБ, цветовая температура 3500 К), тепло белого света (ЛТБ 2700 °К), дневного света (ЛД, 6500 °К) и лампы дневного света с исправленной цветностью (ЛДЦ).
Мощность ламп 4-150 Вт, светоотдача достигает 75 - 80 лм/Вт, срок службы до 12000 - 25000 ч., но к концу этого срок световой поток снижается до 60 % начального.
Разновидностью ламп являются малогабаритные люминесцентные лампы (КЛЛ), имеющие цоколь, как и у ламп накаливания. Небольшие размеры достигаются за счет сгибания газоразрядной трубки. Срок службы ламп в пять раз больше, чем у ламп накаливания, потребление электроэнергии в четыре раза меньше при 1 том же световом потоке [8].
Люминесцентные лампы используются для внутреннего освещения помещений.
Осветительные приборы содержат источник света и оптическую систему со вспомогательной арматурой и предназначены для освещения различных объектов. Основная функция осветительного прибора - перераспределение светового потока источника света в требуемом направлении окружающего его пространства. Вспомогательными функциями являются: коммутация и стабилизация электрической энергии, защита источника света от механических повреждений, изоляция источника света от взрывоопасных, пожароопасных, влажных, химически агрессивных и пыльных сред, изменение спектрального состава излучения источника света (при необходимости), установочное крепление прибора по месту эксплуатации, выполнение специфических функций (например, при подводном или космическом освещении, технологическом излучении и пр.) [8].
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10