Для более точной оценки по каждому мероприятию необходимо выполнить расчет экономии электроэнергии по нижеприведенной методике.
Сначала необходимо определить фактическое среднее значение освещенности с учетом отклонения напряжения в сети от номинального по формуле:
(5.6)
где Еф - измеренная фактическая освещенность, лк;
k - коэффициент, учитывающий изменения светового потока лампы при отклонении напряжения питающей сети (к=4 для ламп накаливания, к=2> для газоразрядных ламп);
UH - номинальное напряжение сети, В;
Ucp - среднее фактическое значение напряжения Ucp = (U1 - U2) / 2 [В] (U1 и U2 - значения напряжения сети в начале и конце измерения).
Для учета отклонения фактической освещенности от нормативных значений определяем коэффициент приведения:
kni=Eфі/Ені (5.7)
где kni - коэффициент приведения освещенности i-ro помещения;
Еф - фактическое значение освещенности в i-ом помещении;
Ені - нормируемое значение освещенности в i-ом помещении.
Потенциал годовой экономии электроэнергии в ОУ обследуемого помещения рассчитывается по формуле:
, (5.8)
где - потенциал экономии электроэнергии в кВт×ч/год для i-ro помещения и k-ro мероприятия.
К основным мероприятиям относятся:
1. Переход на другой тип источника света с более высокой светоотдачей (лм/вт). Экономия электроэнергии в результате данного мероприятия определяется по формуле:
, (5.9)
где kИСі - коэффициент эффективности замены типа источника света;
k3Пi - коэффициент запаса учитывающий снижение светового потока лампы в течение срока службы (при замене ламп с близким по значению кзп но с разной эффективностью кзп исключается или корректируется, кроме случая когда обследование проводилось после групповой замены источников света).
, (5.10)
где h - светоотдача существующего источника света [лм/вт];
hN - светоотдача предлагаемого к установке источника света [лм/вт].
2. Повышение КПД существующих осветительных приборов вследствие их чистки. Экономия электроэнергии в результате данного мероприятия определяется по формуле:
, (5.11)
где kЧi - коэффциент эффективности чистки светильников.
, (5.12)
где gс, bс, tc - постоянные для заданных условий эксплуатации светильников;
t - продолжительность эксплуатации светильников между двумя ближайшими чистками.
Несвоевременная чистка светильников может снизить освещенность на 15 - 30 % и более, что приводит к снижению производительности труда и качества продукции, ухудшению психофизиологического состояния работающих, повышению травматизма. В связи с этим на каждом предприятии должен быть график чистки светильников, который подтверждается документально [2]. 3. Повышение эффективности использования отражённого света.
Для повышения коэффициента использования естественного и искусственного освещения поверхности помещений общественных зданий следует окрашивать в светлые тона, что позволит:
0 снизить число установленных светильников при условии обеспечения за данных норм освещенности;
1 повысить освещенность до нормированных значений при существующем числе или незначительном увеличении числа светильников.
Все поверхности в определенной степени поглощают свет. Чем меньше их отражательная способность, тем больше света они поглощают. Из этого следует, что поверхности, окрашенные в светлые цветовые тона, являются более эффективными, однако их следует регулярно красить, мыть либо заново оклеивать с тем, чтобы обеспечить экономичное использование освещения. Отражение от цветных поверхностей в комнате может сказаться на количестве и цветовом составе света на рабочих поверхностях [16].
Увеличение коэффициентов отражения поверхностей помещений на 20% и более (покраска в более светлые тона, побелка, мойка) позволяет экономить 5-15 % электроэнергии, вследствие увеличения уровня освещенности от естественного и искусственного освещения. Эффективность данного мероприятия зависит от большого числа факторов: размеры помещения, коэффициенты отражения поверхностей помещения, расположение светопроемов, коэффициент естественной освещенности (КЕО), режим работы людей в помещении, светораспределение и расположение светильников. Более точное значение экономии электроэнергии можно получить на основании светотехнического расчета методом коэффициента использования [10].
4. Повышение эффективности использования электроэнергии при автоматизации управления освещением.
Эффективность данного мероприятия является многофакторной, методика расчета экономии электроэнергии сложна для использования при энергообследовании, но может быть рекомендована при необходимости точной оценки [5].
Автоматическое управление наружным освещением, по сравнению с ручным, дает экономию электроэнергии порядка 2 - 4 % [18].
Управление освещением в помещениях с боковым и комбинированным естественным светом должно обеспечивать возможность отключения рядов светильников, параллельных окнам. Эти мероприятия могут привести к снижению расхода электроэнергии на 5 - 10 % [18].
На основании опыта внедрения систем автоматизации и экономию от данного мероприятия можно определить по следующей формуле [5]:
, (5.13)
где - коэффициент эффективности автоматизации управления освещением, который зависит от уровня сложности системы управления. В таблице 5.1 представлены значения для предприятий и организаций с обычным режимом работы (1 смена).
Таблица 5.1 - Значения коэффициента эффективности автоматизации управления освещением.
№ п.п. |
Уровень сложности системы автоматического управления освещением |
Коэф. эффективности |
1 |
Контроль уровня освещенности и автоматическое включение и отключение системы освещения при критическом |
1,1-1,15 |
2 |
Зонное управление освещением (включение и отключение освещения дискретно, в зависимости от зонного распределения естественной освещенности) |
1,2-1,25 |
3 |
Плавное управление мощностью и световым потоком светильников в зависимости от распределения естественной освещенности |
1,3-1,4 |
5. Установка энергоэффективной пускорегулирующей аппаратуры (ПРА).
, (5.14)
где Knpai - коэффииент потерь в ПРА существующих светильников системы
освещения i-ro помещения;
KnpaiN - коэффициент потерь в устанавливаемых ПРА.
6. Замена светильников является наиболее эффективным комплексным мероприятием, так как включает в себя замену ламп, повышение КПД светильника, оптимизацию светораспределения светильника и его расположения. Для точной оценки экономии электроэнергии необходимо производить светотехнический расчет освещенности для предполагаемых к установке светильников методом коэффициента использования или точечным методом [10]. По расчетному значению установленной мощности (из светотехнического расчета) экономия электроэнергии определяется по формуле:
, (5.15)
где PіN - установленная мощность после замены светильников;
ТГі - годовое число часов работы системы искусственного освещения i-ro помещения.
При упрощенной оценке (при замене светильников на аналогичные по светораспределению и расположению) расчет производится по следующей формуле [16]:
, (5.16)
где kсвi - коэффициент учитывающий повышение КПД светильника:
, (5.17)
где qі - паспортный КПД существующих светильников;
qіN - паспортный КПД предполагаемых к установке светильников.
В случае большого числа однотипных помещений в обследуемом здании со схожими по параметрам, состоянию, и мероприятиям ОУ расчет производится с помощью удельных показателей экономии электроэнергии.
, (5.18)
где - удельная экономия электроэнергии для j - типа помещения;
- расчетная экономия электроэнергии для i-ro помещения;
Sij - площадь i-ro помещения. Общая экономия электроэнергии в системах освещения обследуемого объекта определяется по формуле:
, (5.19)
где SJ - общая площадь помещений j-го типа;
N - количество типов помещений.
6 Оборудование, необходимое для аудита системы освещения
Для анализа системы освещения мы пользовались цифровым фотометром ТЕС 0693 (люксометр-яркомер). Фотометр предназначен для измерения освещенности, формируемой естественным и искусственным светом, источник которого расположен произвольно от головки фотометрической, и для измерения яркости несамосветящихся объектов в нормальных климатических условиях: температура окружающей среды от 5 до 40 °С; относительная влажность воздуха от 60 до 95 %; атмосферное давление (100±4) кПа (760±30 мм рт.ст.). Диапазон измерения освещенности составляет: от 10 до 105 лк с косинусной насадкой и от 0,1 до 104без косинусной насадки. Диапазон измерения яркости - от 10 до 2-10 Кд/м". Нестабильность измерений фотометра составляет не более 1 % и обеспечивается конструкцией. Питание фотометра осуществляется от встроенной аккумуляторной батареи напряжением 9В или от блока питания, работающего от сети напряжением (220±22) В и частотой (50±0,5) Гц в двух режимах: режим источника напряжения 9 В; режим заряда аккумуляторной батареи. Время непрерывной работы от аккумуляторной батареи составляет не менее 8 часов. Потребляемая мощность фотометра не превышает 0,1 Вт, а время установления рабочего режима не более 1 минуты.
Фотометр состоит из электронного блока, головки фотометрической со съемной косинусной насадкой, насадкой для измерения яркости и блока питания. На лицевой панели прибора расположено цифровое табло (три полных и один неполный десятичный разряд), переключатель питания с двумя положениями "Вкл" и "ЗО" (заряд аккумуляторной батареи и отключено), две регулировки "под шлиц" для установки нуля, переключатель каналов измерения: освещенности (Е), яркости (L), переключатель пределов измерения на четыре рабочие положения.
Принцип работы фотометра состоит в следующем: световой поток, попадая на фоточувствительный элемент головки фотометрической, генерирует фототок, преобразуемый преобразователем ток-напряжение в пропорциональное ему натпряжение постоянного тока. Аналого-цифровой преобразователь преобразует напряжение в цифровой код, выводимый на жидкокристаллический индикатор. Схема выбора предела измерений задает коэффициент преобразования, величину опорного напряжения на аналого-цифровом преобразователе и положение запятой на жидкокристаллическом индикаторе.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10