Автономные береговые электроэнергетические системы

2. Выбор вариантов схем соединения ЛЭП


Имеются данные о расположении новых подстанций ПС-1, ПС-2 и ПС-3 в принятых координатах (табл.3). Намечаем несколько вариантов соединения точек новых подстанций с близлежащими подстанциями (рис.2).


Рис.2. Варианты радиально-магистральных и замкнутых схем соединения новых ЛЭП


Расстояния между пунктами 1, 2 и 3, а также между ними и близрасположенными существующими подстанциями приведены ниже:



Сопоставим намеченные варианты по критерию суммарной длины новых ЛЭП.

Радиальные варианты:



Кольцевые варианты:



Из приведённых вариантов для дальнейшего рассмотрения выбираем радиально-магистральный вариант Р-2.


3. Выбор номинальных напряжений сооружаемых ЛЭП


Выбор номинальных напряжений выполняем по эмпирической формуле:


,


где Р - мощность (МВт) на одну цепь, L - длина линий (км).

Расстояния между подстанциями увеличиваем на 20% относительно воздушной прямой.

Исходные данные по нагрузкам подстанций приведены в таблице 6.


Таблица 6

Выбор номинальных напряжений ВЛ варианта радиально-магистральной сети

ВЛ

L, км

L+20%, км

P, МВт

Цепей

U, кВ

Uном, кВ

А-1

17

20,4

105

2

108,8

110 (220)

1-2

32,8

39,4

44

2

103,2

110

2-3

28,2

33,8

14

2

74,6

110


Для линии А-1 целесообразно выбрать напряжение 220 кВ, так как в этом случае придется поменять сечение проводов линии 0-А и, возможно, опоры. А если выбрать напряжение 110 кВ, то плюс ко всему этому придется менять трансформаторы подстанции А.


4. Определение сечений проводов сооружаемых ЛЭП


Суммарное сечение (F) проводов фазы проектируемой ВЛ составляет:


,


где IP-расчетный ток, А;

jH-нормированная плотность тока, А/мм2.

Для заданного числа использования максимальной нагрузки 4500 ч jH = 1,1 А/мм2.

Значение IP определяется по выражению:



где I5 - ток линии на пятый год её эксплуатации в нормальном режиме;

 - коэффициент, учитывающий изменение нагрузки по годам эксплуатации линии. Для линий 110…220 кВ значение  может быть принято равным 1,05, что соответствует математическому ожиданию этого коэффициента в зоне наиболее часто встречающихся темпов роста нагрузки.

 - коэффициент, учитывающий число часов использования максимальной нагрузки ВЛ (Тmax), а коэффициент Км отражает участие нагрузки ВЛ в максимуме энергосистемы.

Рассчитываем коэффициенты Км для нагрузок новых подстанций (табл.7).


Таблица 7

Под - стан - ция

Активная мощность подстанции Р

Состав различных видов потребителей новых п/ст.,%, для Км, о. е.

Км



Освещение

Пром. трёх-сменная

Пром. двух-сменная

Пром. одно-сменная

Электриф. транспорт

С/х




1

0,85

0,75

0,15

1

0,75


ПС-1

61

20

20

15

15

30

0

0,805

ПС-2

30

20

20

40

10

-

10

0,76

ПС-3

14

40

15

-

-

-

45

0,865


Результаты расчетов сечений проводов новых ЛЭП сведены в (табл.8).


Таблица 8

Расчет сечений проводов ЛЭП варианта радиально-магистральной сети

ВЛ

Р, МВт

Q, МВАр

Uном, кВ

Цепей

I5, А

Iрасч, А

F, мм2

Fстанд, мм2

А-1

105

59

220

2

158

1,2

199,1

181

185

1-2

44

25

110

2

132,8

1,28

178,5

162,3

185

2-3

14

8

110

2

42,3

1,14

50,6

46

70


Для всех воздушных линий выбираем сталеалюминиевые провода.

При выборе стандартных сечений были учтены ограничения по механической прочности ВЛ свыше 1 кВ и условиям короны и радиопомех.

Выбранные сечения подлежат проверке по предельно допустимому току в послеаварийных и ремонтных режимах. Для двухцепных ЛЭП послеаварийным током является удвоенное значение нормального тока в режиме максимальных нагрузок (табл.9).



Таблица 9

Результаты расчетов при выборе проводов ВЛ для радиального варианта

ЛЭП

Предварительное сечение

Марка провода

А-1

316

185

510

АС-185/29

510

1-2

265,6

185

510

АС-185/29

510

2-3

84,6

70

265

АС-70/11

265


5. Выбор трансформаторов на понижающих подстанциях


Трансформаторы выбираем по условию:


,


где S5 - максимальная нагрузка подстанции в нормальном режиме на пятый год эксплуатации;

 - допустимый коэффициент перегрузки трансформаторов;

 - число трансформаторов на подстанции.

5.1 Выбор трансформатора на понижающей подстанции ПС-1


Выбираем трансформатор на понижающей подстанции ПС-1 220/110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax=61 МВт, Qmax=34 МВАр.

Строим зимний график нагрузки (рис.2), так как трансформатор наиболее загружен в зимний период.


Рис.2. Зимний график нагрузки для подстанции ПС-1

Средняя нагрузка характерных зимних суток подстанции Sсред = 54,9 МВА. Выделим продолжительность ступени перегрузки К2 = 69,8 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 35,9 МВА.

Соотношение a + b = c + d: a + b = 40,8 МВА. ч; c + d = 30 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 16 часов = 1,4, для вида охлаждения OFAF (ДЦ - принудительная циркуляция воздуха и масла с ненаправленным потоком масла).

Так как в разрабатываемой системе электроснабжения подстанции получают питание последовательно, а напряжение до подстанции ПС-1 220 кВ, а после 110 кВ. То целесообразнее на ПС-1 поставить автотрансформаторы. Для того, чтобы учесть мощности последующих подстанций и обеспечить запас мощности трансформатора с учетом развития, полную мощность ПС-2 и ПС-3 прибавляем к полной мощности ПС-1. Получаем S5 = 120 МВА.

 = 85,7 МВА

Выбираем два автотрансформатора АТДЦТН-125000/220.


5.2 Выбор трансформатора на понижающей подстанции ПС-2

Выбираем трансформатор на понижающей подстанции ПС-2 110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax = 30 МВт, Qmax = 17 МВАр.

Строим зимний график нагрузки (рис.3), так как трансформатор наиболее загружен в зимний период.


Рис.3. Зимний график нагрузки для подстанции ПС-2


Средняя нагрузка характерных зимних суток подстанции Sсред = 23,1 МВА. Выделим продолжительность ступени перегрузки К2 = 34,5 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 23,1 МВА.

Соотношение a + b = c + d: a + b = 9,6 МВА. ч; c + d = 11,4 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 4 часа = 1,5, для вида охлаждения ONAF (Д - принудительная циркуляция воздуха и естественная циркуляция масла).


 = 23 МВА


Выбираем два трансформатора ТРДН-25000/110.


5.3 Выбор трансформатора на понижающей подстанции ПС-3

Выбираем трансформатор на понижающей подстанции ПС-2 110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax = 14 МВт, Qmax = 8 МВАр.

Строим зимний график нагрузки (рис.4), так как трансформатор наиболее загружен в зимний период.


Рис.4. Зимний график нагрузки для подстанции ПС-3


Средняя нагрузка характерных зимних суток подстанции Sсред = 11,3 МВА. Выделим продолжительность ступени перегрузки К2 = 16,1 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 10,8 МВА.

Соотношение a + b = c + d: a + b = 3,2 МВА. ч; c + d = 3 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 4 часа = 1,5, для вида охлаждения ONAF (Д - принудительная циркуляция воздуха и естественная циркуляция масла).

 = 7,5 МВА

Выбираем два трансформатора ТДН-10000/110.


6. Принципиальная схема расчетного варианта развития энергосистемы


Рис.5. Принципиальная схема расчетного варианта развития энергосистемы



Страницы: 1, 2



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать