Билеты по физике за весь школьный курс

50. Явление самоиндукции. Индуктивность. Энер­гия магнитного поля.

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток Ф через контур пропорционален вектору магнитной индукции В, а индукция, в свою очередь, силе тока в проводнике. Следовательно, для магнитного потока можно записать . Коэффициент пропорциональности называется индуктивностью и зависит от свойств проводника, его размеров и среды, в которой он находится. Единица индуктивности – генри, индуктивность равна 1 генри, если при силе тока в  1 ампер магнитный поток равен 1 веберу. При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока вызывает возникновение в катушке ЭДС индукции. Явление возникновения ЭДС индукции в катушке в результате изменения силы тока в этой цепи называется самоиндукцией. В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию при включении и убыванию при выключении цепи. ЭДС самоиндукции, возникающая в катушке с индуктивностью L, по закону электромагнитной индукции равна. Пусть при отключении сети от источника, ток убывает по линейному закону. Тогда ЭДС самоиндукции имеет постоянное значение, равное . За время t при линейном убывании в цепи пройдет заряд . При этом работа электрического тока равна . Эта работа совершается за свет энергии магнитного поля катушки.


51. Гармонические колебания. Амплитуда, период, частота и фаза колебаний.

Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно одинаково через одинаковые промежутки времени. Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами. Силы, действующие на тела системы со стороны других тел, называют внешними силами. Свободными колебаниями называют колебания, возникшие под воздействием внутренних сил, например – маятник на нитке. Колебания под действиями внешних сил – вынужденные колебания, например – поршень в двигателе. Общим признаков всех видов колебаний является повторяемость процесса движения через определенный интервал времени. Гармоническими называются колебания, описываемые уравнением . В частности колебания, возникающие в системе с одной возвращающей силой, пропорциональной деформации, являются гармоническими. Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т. Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой . Частота измеряется в герцах, 1 Гц = 1 с-1. Используется также понятие циклической частоты, определяющей число колебаний за 2p секунд . Модуль максимального смещения от положения равновесия называется амплитудой. Величина, стоящая под знаком косинуса – фаза колебаний, j0 – начальная фаза колебаний. Производные также гармонически изменяются, причем , а полная механическая энергия при произвольном отклонении х (угол, координата, и т.д.) равна , где А и В – константы, определяемые параметрами системы. Продифференцировав это выражение и приняв во внимание отсутствие внешних сил, возможно записать, что , откуда .


52. Математический маятник. Колебания груза на пружине. Период колебаний математического маятника и груза на пружине.

Тело небольших размеров, подвешенное на нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела, называется математическим маятником. Вертикальное положением является положением равновесия, при котором сила тяжести уравновешивается силой упругости. При малых отклонениях маятника от положения равновесия возникает равнодействующая сила, направленная к положению равновесия, и его колебания являются гармоническими. Период гармонических колебаний математического маятника при небольшом угле размаха равен . Чтобы вывести эту формулу запишем второй закон Ньютона для маятника . На маятник действуют сила тяжести и сила натяжения нити. Их равнодействующая при малом угле отклонения равна . Следовательно, , откуда .

При гармонических колебаниях тела, подвешенного на пружине, сила упругости равна по закону Гука .  По второму закону Ньютона  .


53. Превращение энергии при гармонических колебаниях. Вынуж­денные колебания. Резонанс.

При отклонении математического маятника от положения равновесия его потенциальная энергия увеличивается, т.к. увеличивается расстояние до Земли. При движении к положению равновесия скорость маятника возрастает, и увеличивается кинетическая энергия, за счет уменьшения запаса потенциальной. В положении равновесия кинетическая энергия – максимальная, потенциальная – минимальна. В положении максимального отклонения – наоборот. С пружинным – то же самое, но берется не потенциальная энергия в поле тяготения Земли, а потенциальная энергия пружины. Свободные колебания всегда оказываются затухающими, т.е. с убывающей амплитудой, т.к. энергия тратится на взаимодействие с окружающими телами. Потери энергии при этом равны работе внешних сил за это же время. Амплитуда зависит от частоты изменения силы. Максимальной амплитуды она достигает при частоте колебаний внешней силы, совпадающей с собственной частотой колебаний системы. Явление возрастания амплитуды вынужденных колебаний при описанных условиях называется резонансом. Так как при резонансе внешняя сила совершает за период максимальную положительную работу, то условие резонанса можно определить как условие максимальной передачи энергии системе.


54. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения. Звуковые волны. Скорость звука. Ультразвук

Возбуждение колебаний в одном месте среды вызывает вынужденные колебания соседних частиц. Процесс распространении колебаний в пространстве называется волной. Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными волнами. Волны, в которых колебания происходят вдоль направления распространения волны, называются продольными волнами. Продольные волны могут возникать во всех средах, поперечные – в твердых телах под действием сил упругости при деформации или сил поверхностного натяжения и сил тяжести. Скорость распространения колебаний v в пространстве называется скоростью волны. Расстояние l между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны. Зависимость длины волны от скорости и периода выражается как , или же . При возникновении волн их частота определяется частотой колебаний источника, а скорость – средой, где они распространяются, поэтому волны одной частоты могут иметь в разных средах различную длину. Процессы сжатия и разрежения в воздуха распространяются во все стороны и называются звуковыми волнами.  Звуковые волны являются продольными. Скорость звука зависит, как и скорость любых волн, от среды. В воздухе скорость звука 331 м/с, в воде – 1500 м/с, в стали – 6000 м/с. Звуковое давление – дополнительно давление в газе или жидкости, вызываемое звуковой волной. Интенсивность звука измеряется энергией, переносимой звуковыми волнами за единицу времени через единицу площади сечения, перпендикулярного направлению распространения волн, и измеряется в ваттах на квадратный метр. Интенсивность звука определяет его громкость. Высота звука определяется частотой колебаний. Ультразвуком и инфразвуком называют звуковые колебания, лежащие вне пределов слышимости с частотами 20 килогерц и 20 герц соответственно.


55.Свободные электромагнитные колебания в контуре. Превраще­ние энергии в колебательном контуре. Собственная частота коле­баний в контуре.

Электрическим колебательным контуром называется  система, состоящая из конденсатора и катушки, соединенных в замкнутую цепь. При подключении катушки к конденсатору в катушке возникает ток и энергия электрического поля превращается в энергию магнитного поля. Конденсатор разряжается не мгновенно, т.к. этому препятствует ЭДС самоиндукции в катушке. Когда же конденсатор разрядится полностью, ЭДС самоиндукции будет препятствовать убыванию тока, и энергия магнитного поля будет переходить в энергию электрического. Ток, возникающий при этом, зарядит конденсатор, причем знак заряда на обкладках будет противоположным первоначальному. После чего процесс повторяется до тех пор, пока вся энергия не будет затрачена на нагревание элементов цепи. Таким образом, энергия магнитного поля в колебательном контуре переходит в энергию электрического и обратно. Для полной энергии системы возможно записать соотношения: , откуда для произвольного момента времени . Как известно, для полной цепи  . Полагая, что в идеальном случае R»0, окончательно получим , или же . Решением этого дифференциального уравнения является функция , где . Величину w называют собственной круговой (циклической) частотой колебаний в контуре.


56. Вынужденные электрические колебания. Переменный электри­ческий ток. Генератор переменного тока. Мощность переменного тока.

Переменный ток в электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Пусть плоский виток имеет площадь S и вектор индукции B составляет с перпендикуляром к плоскости витка угол j. Магнитный поток Ф через площадь витка в данном случае определяется выражением . При вращении витка с частотой n угол j меняется по закону ., тогда выражение для потока примет вид. Изменения магнитного потока создают ЭДС индукции, равную минус скорости изменения потока . Следовательно, изменение ЭДС индукции будет проходить по гармоническому закону . Напряжение, снимаемое с выхода генератора, пропорционально количеству витков обмотки. При изменении напряжения по гармоническому закону  напряженность поля в проводнике изменяется по такому же закону. Под действием поля возникает то, частота и фаза которого совпадают с частотой и фазой колебаний напряжения . Колебания силы тока в цепи являются вынужденными, возникающими под воздействием приложенного переменного напряжения. При совпадении фаз тока и напряжения мощность переменного тока равна или . Среднее значение квадрата косинуса за период равно 0.5, поэтому . Действующим значением силы тока называется сила постоянного тока, выделяющая в проводнике такое же количество теплоты, что и переменный ток. При амплитуде I­­­­­­­­­­­­­­max гармонических колебаний силы тока действующее напряжение равно . Действующее значение напряжения также в  раз меньше его амплитудного значения Средняя мощность тока при совпадении фаз колебаний определяется через действующее напряжение и силу тока.


57. Активное, индуктивное и емкостное сопротивление.

Активным сопротивлением R называется физическая величина,  равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать