Рисунок 8 – Схема расположения мертвых зон
Если для расчетных точек к1 и к2 условие (1.1) не выполняется, то зону защиты выключателей подстанции и поста уменьшают (увеличивают значение ). В этом случае для выключателей подстанции А и подстанции Б образуются мертвые зоны возле поста секционирования, а для выключателей поста – мертвые зоны возле подстанции. Защита подстанций не реагирует на к.з. в мертвых зонах возле поста, а защита поста не реагирует на к.з. в мертвых зонах возле подстанций.
1.3.2 Максимальная импульсная токовая защита
Максимальная импульсная токовая защита (МИЗ) реализуется с помощью автоматических быстродействующих выключателей с индуктивным шунтом или реле РДШ; используется как основная в межподстанционной зоне для фидеров подстанций и постов секционирования, а также тупиковых фидеров (станционные, деповские). Для пунктов параллельного соединения может использоваться только при неполяризованных выключателях в качестве резервной.
Для повышения чувствительности выключателя к коротким замыканиям параллельно размагничивающему витку подключается индуктивный шунт. При этом выключатель, как реле прямого действия, приобретает новые свойства: он реагирует не только на значения тока, но и на признаки, характеризующие изменение его в переходном процессе.
Уставка срабатывания выбирается по условию (1.1) при кв=1, в котором коэффициент запаса кз принимают равным 1,15-1,25.
Выбранная уставка проверяется по наименьшему значению при котором замыкании в конце зоны защиты. При этом уставка выключателей фидеров тяговых подстанций должна отвечать следующим условиям:
· для выключателей типа АБ2/4 и АБЗ/4 с полным пакетом стальных пластин индуктивного шунта (240 мм), а также выключателей ВАБ-28 с реле РДШ-1
;(1.3)
· для выключателей АБ2/4 (выпуска 1966 года и позже) при полном пакете стальных пластин индуктивного шунта (200 мм), выключателей типа
· ВАБ-43-4000/30-Л-УХЛ4 с номинальными параметрами индуктивного шунта, а также выключателей ВАБ-28 с реле РДШ-3000:
;(1.4)
· При наличии на фидере подстанции двух соединенных последовательно выключателей допускается для каждого из них выбирать разные уставки (кроме выключателей ВАБ-43-4000/30-Л-УХЛ4, для которых уставка обоих выключателей должна быть одинаковой). Уставка Iу,МИЗ,1 выключателя с уменьшенным от 65 до 70 процентов пакетом стали индуктивного шунта. Уставка Iу,МИЗ,2 второго выключателя с полным пакетом шунта должна отвечать условию:
Iу,МИЗ,2 ≤ (1,6 – 1,8)Iк,min;(1.5)
· для выключателей типа ВАБ-43-6300/30-Л-УХЛ4 с номинальными параметрами индуктивного шунта:
;(1.6)
Уставка автоматических быстродействующих выключателей с индуктивными шунтами на постах секционирования и пунктах параллельного соединения выбирается по условию (1.1). Выбранная уставка проверяется по условию:
.(1.7)
1.3.3 Защита минимального напряжения
Защиты минимального напряжения реагируют на уровень напряжения в тяговой сети. Основным органом такой защиты является реле минимального напряжения, которое подключается к контактной сети через добавочный резистор. Оно срабатывает, когда уровень напряжения в контактной сети (в месте подключения реле) становится ниже уставки срабатывания U.
Защита минимального напряжения (ЗМН) может использоваться на постах секционирования и пунктах параллельного соединения. Она может устанавливаться также на перегоне при воздействии на короткозамыкатель или при условии передачи информации на смежные подстанции или пост секционирования по каналам телемеханики.
На пунктах параллельного соединения потенциальная защита может использоваться как основная, в остальных случаях — как резервная.
Нижний уровень уставки реле выбирается равным 500-600 В, верхний — в диапазоне 2200-2500 В. При напряжении в контактной сети выше нижнего уровня уставки контакты реле замкнуты. Если напряжение выше верхнего уровня, стабилитроны переходят в режим стабилизации. Токи в мостовой схеме перераспределяются и реле размыкает контакты. Таким образом, контакты реле замыкаются только при напряжении в сети выше нижнего и ниже верхнего уровня уставки. При нормальном напряжении в сети, а также в случае его отсутствия контакты разомкнуты. Нет необходимости вводить в цепь реле блок-контакты фидерных выключателей. Поэтому команда на включение короткозамыкателя или на отключение выключателей подается не каскадно, а сразу. Время отключения при этом уменьшается.
Уставка срабатывания выбирается по условию:
(1.8)
где – наименьшее допустимое напряжение в контактной сети при нормальной работе, принимаемое равным 2700 В;
Выбранная уставка проверяется на чувствительность к коротким замыканиям по формуле:
(1.9)
где – наибольшее напряжение в месте установки защиты при коротком замыкании в расчетной точке.
Если потенциальная защита является основной (пункты параллельного соединения), то она выполняется без выдержки времени. При использовании ее в качестве резервной применяется выдержка времени, величина которой на 0,1-0,2 с больше, чем у резервной защиты с наибольшей выдержкой времени.
1.3.4 Защита по сопротивлению
Дистанционная защита может использоваться в качестве основной или (и) резервной на фидерах подстанций и постов секционирования, а также как резервная на пунктах параллельного соединения. Защита выполняется, как правило, одноступенчатой или двухступенчатой. В устройстве ЦЗАФ-3,3 дистанционная защита (защита по сопротивлению) выполнена в одноступенчатом варианте.
Выдержка времени любой ступени резервной защиты не должна превышать от 0,2 до 0,3 с.
При использовании одноступенчатой или первой ступени двухступенчатой дистанционной защиты в качестве резервной ее выдержка времени устанавливается, как правило, не более чем от 0,1 до 0,15 с. Допускается использование этой ступени без выдержки времени.
Уставку срабатывания резервной защиты выбирают по условию:
(1.10)
где – наименьшее значение сопротивления петли короткого замыкания, измеряемое защитой выключателя;
– коэффициент отстройки. Для защит, реагирующих на ток, его производную тли интегральное за заданный промежуток времени, принимают значение 1,2-1,6. Для защит, реагирующих на напряжение или сопротивление петли короткого замыкания, принимают равным 0,85-0,9
Уставка срабатывания резервной защиты Rу выбирается по условию:
(1.11)
где – - максимальное значение сопротивления петли короткого замыкания, Ом.
Коэффициент чувствительности кч в выражении (1.11) принимается равным 1,25.
Для второй ступени коэффициент чувствительности принимаем 1,15. Вторая ступень защиты по сопротивлению на постах секционирования при нормальной схеме питания, как правило не применяется.
Вторая ступень двухступенчатой дистанционной защиты используется на выключателях тяговой подстанции в качестве резервной при нормальной схеме питания.
Выбранная уставка проверяется на нечувствительность к нормальным режимам по условию:
(1.12)
где – коэффициент адаптации. Для защиты без адаптации принимают равным 1, для защит с адаптацией осуществляющих автоматическое загрубление уставки при больших тяговых токах принимают равным 1,2-1,3;
Достоинством защиты по сопротивлению является независимость зоны ее действия от уровня напряжения в контактной сети. Зашита по сопротивлению на фидерах тяговых подстанций обеспечивает требуемые условия чувствительности в зоне примерно на 20 % длиннее, чем токовая защита.
Эффективным является применение защиты по сопротивлению в дополнение к максимальной импульсной защите, осуществляемой быстродействующими выключателями. При больших размерах движения быстродействующие выключатели обычно имеют значительное число ложных отключений, а уставку их для отстройки от нормального режима поднять не удается, так как при этом сокращается зона защиты. Однако, если применить защиту по сопротивлению, то можно на 30-40 % увеличить уставку срабатывания быстродействующего выключателя так, чтобы сократить или вообще исключить его ложные отключения в нормальном режиме. Сокращение зоны действия максимальной импульсной защиты при коротком замыкании при этом не опасно, поскольку эта зона будет перекрываться защитой по сопротивлению. Совместное применение максимальной импульсной защиты и защиты по сопротивлению позволяет обеспечить требуемую чувствительность при тяговых токах фидеров на 20-25 % большие, чем только при одной токовой защите. Особенно эффективно применение защиты по сопротивлению на фидерах постов секционирования, поскольку при удаленных к.з. напряжение на их шинах снижается значительно больше, чем на подстанциях.
1.3.5 Защита реагирующая на приращение тока
Контроль за приращением тока осуществляет схема, приведенная на рисунке 9.
Рисунок 9 – Функциональная схема защиты реагирующей на приращение тока
Функциональная схема содержит трансформатор TAV с воздушным зазором, режекторный фильтр ZF, пороговые элементы фиксированного времени КТ интегратор А и выходной орган ВО. Интегратор А имеет информационный вход, на который поступает напряжение с фильтра ZF, и управляющий вход, соединенный с выходом элемента времени КТ. Интегрирование производится в интервале времени, пока на управляющем входе имеется разрешающий сигнал. Постоянная времени интегратора принимается равной 3-5 с.
На вторичной обмотке трансформатора TAV при этом образуются сигналы, которые после очищения в фильтре ZF от пульсаций интегратора А получает сигнал . Амплитуда этого сигнала в конце интервала времени в некотором масштабе пропорциональна приращению тока в контактной сети.
Если эта амплитуда превысит уставку порогового элемента KV2, то последний сработает и через выходной орган отключит выключатель Q. Уставка , определяемая порогом срабатывания элемента KV2, выбирается по условию:
(1.13)
где – наибольшее приращение тока в нормальном режиме;
– наименьшее приращение тока при к.з.;
– коэффициент снижения приращения тока короткого замыкания при наличии значительной нагрузки в момент, предшествовавший повреждению контактной сети, принимают 0,7-0,8
Коэффициенты принимают равным 1,1-1,3.
В качестве принимают значение тока протекающего через рассматриваемый выключатель подстанции или поста секционирования при к.з. в конце зоны защиты, при условии, что до момента к.з. ток нагрузки был равен нулю.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16