Дифракция электронов. Электронный микроскоп

Рис. 2. Кривая распределения интенсивности в дифрак­ционной картине от двух точечных источников света.

d ¾ расстояние между центральными максимумами, M ¾ увели­чение оптической системы.

На рис. 2 приведён график, характеризующий распределение ин­тенсивности света при наложении дифракционных картин двух близко расположенных точечных источников света для случая, соответствую­щего критерию Релея. По оси абсцисс отложена величина, пропорцио­нальная расстоянию от центра (см. рис. 1). Сплошная тонкая крива ха­рактеризует распределение интенсивности света, создаваемое пер­вым источником; пунктирная кривая относится ко второму из разре­шаемых источников. Первые максимумы по высоте (т.е. интенсивности) заметно выше последующих, соответствующих интенсивности света в кольцах, удалённых от центра (см. рис. 1). Сплошная толстая кривая характеризует суммарное распределение интенсивности света.

Теория показывает, что в случае разрешения по критерию Релея угол q, под которым видны два исследуемых источника света, равен:

q » 0,61*(l/D). Часто используется величина А, обратная предельному углу q:

А=(1/q)=D/(0,61*l),

носящая название разрешающей силы оптической системы.

Приведённые основные закономерности обусловлены волновой природой света и ограничивают возможность разрешения источников с помощью любых оптических систем, в том числе  в астрономии и мик­роскопии. Следует подчеркнуть, что приведённая формула соответст­вует случаю самосветящихся объектов, посылающих некогерентные волны. Как известно, с помощью микроскопов часто рассматривают объекты, освещаемые посторонним источником; это значит, что от­дельные точки объекта рассеивают световые волны, исходящие из од­ной и той же точки источника, и свет, идущий от разных точек объекта, оказывается поэтому в значительной мере когерентным. Определение разрешающей способности микроскопа в случае когерентного освеще­ния, проводимое по методу Аббе, приводит к аналогичному результату (некоторое различие в численных коэффициентах несущественно, по­скольку вообще понятие разрешающей способности несколько ус­ловно).

Предельную разрешающую способность микроскопа часто назы­вают дифракционным пределом, поскольку она определяется явле­ниями дифракции на входном зрачке. Правда, ряд остроумных ухищре­ний позволил «заглянуть» несколько дальше этого предела. Здесь следует упомянуть метод, основанный на применении иммерсионных систем (в котором пространство между предметом и объективом за­полняется специальными средами) и позволяющий повысить разре­шающую способность примерно в 1,5 раза; метод тёмного поля, осно­ванный на явлении рассеяния света на малых частицах и позволяющий регистрировать наличие сверхмалых частиц, когда их размеры лежат за пределом разрешающей способности микроскопа; метод фазового контраста, при помощи которого можно изучать полностью прозрачные объекты.

Невидимые излучения.

Пользуясь современным языком теории информации, можно ска­зать, что за попытку проникнуть за дифракционный предел приходится платить ценой потери информации о деталях изучаемого объекта. Действительно, методы субмикроскопии позволяют лишь судить о на­личии микрообъектов в поле зрения микроскопа, но не об их форме и других деталях.

Весьма заметный качественный скачок в методах микроскопии был сделан физиками, которые стали использовать в микроскопии инфракрасное, ультрафиолетовое и другие невидимые глазом излуче­ния. Применение этих излучений для освещения объектов наблюдения было связано с их способностью поглощать, отражать, пропускать и преломлять падающее на них излучение. Поэтому, вообще говоря, при использовании излучений различных участков спектра эти объекты вы­глядят по-разному. Следовательно, подбирая соответствующее осве­щение, можно получить новую информацию о предмете, так как характеристики поглощения, отражения, пропускания и преломления реальных неорганических и органических веществ зависят от длины волны.

Наряду с этим следует отметить, что использование в микро­скопии ультрафиолетового излучения (более коротковолнового по сравнению с видимым) позволило повысить предел разрешающей спо­собности микроскопа. Это легко понять, если вспомнить, что теорети­ческий предел разрешающей способности пропорционален длине волны источника излучения. Если при l » 5200 ¾ 5800 A°[1] (жёлто-зелё­ная область, где глаз обладает наибольшей чувствительностью) тео­ретический предел разрешающей способности при n=1 (где n - показатель преломления) составляет около 2000 A°, то при использо­вании ультрафиолетового излучения (l » 3000 A°) теоретический пре­дел разрешающей способности достигает примерно 1200A°. Ясно, что в таких ультрафиолетовых микроскопах используются специальные оптические элементы.

Все приборы, использующие невидимые глазом излучения, со­стоят из осветителя (источника освещения), оптических элементов (линз, зеркал, призм и т. п.), пригодных для работ в данном участке спектра, и элементов, преобразующих «невидимое изображение» в ви­димое. В последнее время стали успешно использовать для получения информации о строении объектов радиоизлучение (миллиметрового и субмиллиметрового), длины волн которого значительно больше длин волн видимого излучения.

Остановимся несколько подробнее на некоторых общих физиче­ских закономерностях, свойственных получению изображения в микро­скопии.

Получение большого увеличения в принципе осуществимо путём использования соответствующих оптических элементов. Однако если предел разрешающей способности прибора уже достигнут и детали изображения нельзя различить, то дальнейшее увеличение исследуе­мого предмета теряет практический смысл. Поэтому существует тер­мин «полезное увеличение микроскопа». С вопросом увеличения связан также и вопрос об искажениях в микроскопе (как и в других оптических приборах). Эти искажения возникают из-за отклонения оптических по­верхностей элементов (линз и т. п.) от идеальной формы, неточного расположения элементов и т. п. Кроме этого, искажения (хроматическая аберрация) возникают и из-за зависимости коэффици­ента преломления материалов, из которых изготавливаются оптиче­ские элементы, от длины волны света (дисперсии света в материалах). Таким образом, мы видим, что «проникнуть глубже» в мир малых объ­ектов путём использования больших увеличений нельзя. И только ис­пользование более коротковолновых излучений, т. е. излучений с меньшими длинами волн, чем у видимого света, должно в принципе привести к повышению разрешающей способности. Тем самым пресло­вутый дифракционный предел может быть «отодвинут», и открывается возможность наблюдения и исследования новых классов невидимых объектов и новых деталей уже известных объектов.

Большие надежды возлагались и возлагаются на диапазон рентгеновских лучей (некогда таинственных X- лучей). Напомним, что рентгеновское излучение, создаваемое в рентгеновских трубках путем разгона электронов электрическим полем и их последующего тормо­жения на положительно заряженном электроде (антикатоде), так же как и видимый свет, является электромагнитным излучением. Оно ха­рактеризуется длинами волн на четыре-пять порядков меньшими, чем у видимого света. Например, в медицинской диагностике применяется рентгеновское излучение с l»0,17 ¾ 0,10A°, а при просвечивании мате­риалов (толстые стальные и другие изделия) ¾ с l » 0,05 A°. Отсюда видно, что использование рентгеновского излучения в обычном опти­ческом микроскопе вместо видимого могло бы дать соответствующее, легко оцениваемое теоретически повышение разрешающей способно­сти прибора.

Воспользуемся формулой для определения предела разрешаю­щей способности прибора d»(0,61*l)/(n*sinj). Для рентгенов­ских лучей коэффициент преломления n среды очень близок к единице. Поэтому, если воспользоваться рентгеновским излучением с l » 0,1A°  (это со­ответствует ускоряющему напряжению около 120 кв.), то дифракцион­ный предел составит приблизительно 0,05A°. Однако  на пути реализации такой заманчивой возможности существуют принципиаль­ные трудности, связанные с особенностями рентгеновского излучения и его взаимодействия  с веществом. Первая и наиболее существенная трудность заключается в том, что рентгеновские лучи практически не­возможно фокусировать, получать их зеркальное отражение, а также другие явления, лежащие в основе процесса формирования изображе­ний в оптической микроскопии. Для создания линз, призм и других по­добных оптических элементов в этом случае нужны материалы с коэффициентом преломления, большим единицы[2]. Из-за особенностей взаимодействия рентгеновских лучей с веществом (мы здесь не будем касаться подробностей этого вопроса) коэффициент преломления их практически во всех материалах близок к единице, а точнее - не­сколько меньше единицы. Даже лучшие полированные поверхности не могут обеспечить зеркального отражения рентгеновских лучей (длины волн рентгеновского излучения практически всегда меньше средних размеров неоднородностей поверхности). Это обстоятельство препят­ствует созданию зеркального рентгеновского микроскопа.

Несмотря на перечисленные затруднения, в СССР и за границей были успешно проведены эксперименты в области рентгеновской мик­роскопии, используя некоторые специальные приемы. Правда, резуль­таты этих работ пока не получили технической реализации. Кроме того, они в настоящее время не дают возможности надеяться на какое-либо продвижение в сторону дифракционного предела, соответствующего диапазону рентгеновского излучения. Вместе с тем проблема рентге­новской микроскопии является в настоящее время настолько актуаль­ной, что в технике получили развитие некоторые «обходные» приемы, основывающиеся на сочетании методов рентгеновской проекции с ра­диотехническими (в том числе телевизионными) устройствами, позво­ляющими получить дополнительное увеличение (10¸30*) и приемлемое разрешение (порядка нескольких десятков микрон). И хотя это чрезвы­чайно далеко от потенциальных возможностей рентгеновской микро­скопии, подобные устройства находят применение в науке и технике.

Электроны и электронная оптика.

Подлинная революция в микроскопии произошла в 20-х годах нашего века, когда возникла идея использовать в ней потоки частиц - электронов. На основе этой идеи возникла и быстро развилась новая область науки ? электронная микроскопия, позволившая осуществить наиболее глубокий прорыв в области видения и изучения сверхмалых объектов.

Мы привыкли к тому, что видение объекта, формирование его изображения связаны с поступлением в прибор (а в конечном счёте в глаз) световых волн от этого предмета, того, что мы называем излуче­нием. Как же можно получить изображение объекта, причём даже с го­раздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как воз­можно видение предметов на основе использования не волн, а частиц?

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать