Забегая несколько вперед, скажем, что электроны проявляют волновые свойства отнюдь не в меньшей мере, чем «настоящие», привычные волны, например, радио или световые. Но об этом ниже... Вместе с тем электроны ведут себя как настоящие частицы, обладающие массой, траекторией движения, энергией и другими свойствами, присущими различным предметам. Так в первую очередь ведут себя электроны во многих приборах и устройствах, широко применяющихся не только в науке и технике, но и в быту ¾ в электронных лампах, кинескопах и других электронных приборах радиоприёмников и телевизоров.
Современная физика весьма подробно знает «анкетные данные» электрона. Это отрицательно заряженная частица (e=4,8e-10 CGSE) с массой 9,1e-28 г, но физики тщательно обходят вопросы, которые иногда хочется задать чрезмерно любопытным, например о форме электрона, а о его размерах обычно говорят с оговорками. Звучит эта оговорка примерно так: «классический радиус электрона составляет ~ 10-13 см, а в рамках релятивистской теории это вообще точечная частица». Если не касаться определённой группы ситуаций, в которых электроны ведут себя не по правилам «здравого смысла» (об этом ниже), то это частицы, поведение которых можно описать и весьма точно рассчитать по законам механики и теории электромагнетизма, как и любого другого объекта. Правда, в этих случаях, т. е. тогда, когда ещё не проявляются закономерности так называемой квантовой механики, приходится учитывать проявление эффектов теории относительности (релятивистских эффектов) и в первую очередь возрастание массы электрона с ростом скорости его движения.
Во многих практических применениях электронных потоков, например в вакуумных приборах, электроны ведут себя как вполне «нормальные» частицы. Под действием известной силы, например, создаваемой электрическим полем между электродами, электрон приобретает ускорение, пропорциональное силе и обратно пропорциональное его массе. Движущиеся потоки электронов эквивалентны электрическим токам, поэтому могут эффективно взаимодействовать с внешними магнитными полями. Таким образом, электрические и магнитные поля могут существенно влиять на траектории и скорости электронных потоков, и с помощью таких полей можно управлять движением электронов. Наука, занимающаяся нахождением траекторий движения электронов в электрических и магнитных полях, а также расчётом элементов и устройств, способных формировать нужные поля, называется электронной оптикой (обратите внимание ¾ электронной оптикой ).
Более подробный анализ анкетных данных электрона обнаруживает необычность ряда его свойств. Действительно, если подходить к электрону с обычными мерками и считать, что он занимает объём V и обладает массой m, то «плотность вещества в электроне» r»(m/V)=(9,1e-28)/(4/3*p*r3)»1011 г/см3 (!). Здесь мы считаем электрон шариком с радиусом r порядка 10-13 см. Масса, заряд и некоторые другие постоянные, характеризующие электроны, известны уже с весьма высокой точностью[3]. Вопрос о том, каким образом электрон удерживается как целое и не разлетается под действием сил расталкивания, выходит далеко за рамки этого реферата¼
Если предметам, с которыми мы имеем дело в повседневной жизни, достаточно трудно сообщить большую скорость (например, порядка нескольких километров в секунду), то электрон даже в поле с U=1В приобретает скорость V=(2*e/m*U)0,5»6e7 см/сек. Таким образом, электроны легче разогнать до больших скоростей, чем «остановить», т. е. заставить находиться в покое. Электроны в обычной медицинской рентгеновской трубке тормозятся в поверхностном слое антикатода, проходя при этом путь в несколько ангстрем. Отрицательное ускорение на пути s (например, при U»100 кв.) при этом будет весьма велико:
w»(v2)/(2*s)»1023 см/сек2 (!).
Наконец, укажем, что, как правило, в наших приборах для их нормальной работы необходим электронный поток, содержащий внушительное число частиц (например, электронному току в 1A соответствует поток электронов в 1019 частиц в секунду!).
Итак, положение с электронами выглядит своеобразно:
1) есть объект, которым мы умеем управлять и свойства которого научились использовать;
2) мы достаточно хорошо знаем свойства этого объекта и научились проводить измерение даже точнее, чем для многих других объектов, с которыми встречаемся в повседневной жизни и которые можем видеть невооружённым глазом;
3) никто никогда не видел электронов, но все знакомы с результатами его действий;
4) с точки зрения «здравого смысла» и на основе сопоставления результатов очень хорошо поставленных экспериментов электрон является далеко не тривиальным объектом: плотность электронного вещества фантастически велика, он является сверх прочным объектом, способным «противостоять» действию сверхбольших инерциальных и электрических (кулоновских) сил.
Электроны ¾ волны!?
Нечего удивляться, что столь «странная личность», какой является электрон, ведёт себя уже совсем необычно в ряде ситуаций. Эти ситуации проявляются, во-первых, тогда, когда электронов много или вернее, когда их много в единице объёма и, во-вторых, когда электроны взаимодействуют с атомами и молекулами вещества. Эти и ряд других ситуаций характерны для явлений, рассматриваемых квантовой механикой. Из этой удивительной области мы упомянем только то, что в ряде ситуаций электрон ведёт себя как волна. Что это значит?
Мы знаем, что, например, световые волны при взаимодействии с пространственной периодической структурой претерпевают дифракцию. Точно так же при соблюдении определённых условий волны могут интерферировать. Аналогичные свойства наблюдаются у электронов. Так, например, в определённых условиях электронный поток, взаимодействующий с периодической пространственной структурой кристалла, образует дифракционную картину, которую можно зафиксировать на фотопластинке. Известно большое число фактов, когда электроны проявляют волновые свойства. Более того, советские учёные В. Фабрикант, Л. Биберман и Н. Сушкин продемонстрировали волновые свойства отдельных электронов!
Итак, анкетные данные электрона выглядят странно и необычно.
Не вдаваясь в тонкости вопроса о волновых свойствах электронов (как и других микрочастиц!), скажем, что электрону, движущемуся со скоростью v(см/сек), соответствует длина волны l=h/(m*v), где m ¾ масса электрона, а h= 6,6e-27 эрг*сек ¾ знаменитая константа Планка.
Так как v=(2*e/m*U), то l=(12,25/U0,5)A°; здесь U выражено в киловольтах.
Так, например, при U=100 кв. l=0,037 A°. Таким образом, если использовать электроны в микроскопии, то дифракционный предел, обусловленный волновыми свойствами электронов, лежит значительно дальше, чем в оптической микроскопии. А так как электронами можно управлять с помощью электрических и магнитных полей, то электронная оптика позволяет нам заранее рассчитывать такие системы формирования этих полей, которые способны фокусировать потоки электронов, управлять электронными лучами и совершать другие необходимые действия.
В нашем распоряжении также имеются люминесцентные экраны, которые светятся при попадании на их поверхность электронов (вспомним работу кинескопа в телевизоре!); при попадании электронов на фотопластинку происходит фотолитическое почернение. Существуют и другие способы регистрации электронов. Напомним, что электроны способны, кроме того, проникать сквозь тонкие слои материалов, отражаться и рассеиваться материалами. Эти свойства электронов и их взаимодействия с полями и исследуемым веществом лежат в основе электронной микроскопии. Рассмотрим схемы и особенности устройства электронных микроскопов.
Устройство электронного микроскопа.
Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?
В основе работы электронного микроскопа (общий вид его приведён на рис. 3) лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами». В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.
Рис. 3. Электронный микроскоп EM8 фирмы АЕС-Цейсс.
Какого же типа объекты могут быть исследованы с помощью электронного микроскопа? Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.
По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.
Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Устройство такого микроскопа показано на рис. 4 (слева для сравнения показано устройство оптического микроскопа). Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление ~10-4 ¾ 10-5 мм рт. ст. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (здесь и далее речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.