Эффект магнитоимпеданса

Для возможности создания упругих механических напряжений были изготовлены специальная измерительная ячейка и деформирующее устройство.

Схема разработанной ячейки представлена на рис. 10. Несущей частью ячейки является пластинка, изготовленная из миканита – прессованной молотой слюды. На выбор данного материала повлияли его термостойкость и требуемая механическая прочность. Кроме того, миканит является хорошим диэлектриком. На пластинке крепятся стержни, один из которых подвижный. Стержни изготовлены из латуни, так как данный материал является парамагнетиком, и подвержен малому окислению при нагреве. В латунных стержнях находятся две группы контактов: 1) для подключения образца; 2) для подключения генератора переменного тока и вольтметра. Контакты для подключения образцов выполнены в виде механических зажимов, что обеспечивает необходимую надежность при воздействии упругих растягивающих напряжений. Зажимные болты изготовлены из посеребренной латуни, что исключает опасность нарушения контакта в результате окисления. Для предотвращения кручения образца во время зажима, он располагается между двумя шайбами. Шайбы также изготовлены из посеребренной латуни. Контакты второй группы соединены проводниками с коаксиальными разъемами для подключения генератора и вольтметра.


Рис. 10 Схема измерительной ячейки (крепление подвижного стержня дано в разрезе): а – пластина; б – подвижный стержень; в – ось подвижного стержня; г – неподвижный стержень; д – разъем для подключения вольтметра ; е – разъем для подключения генератора переменного тока; ж – образец; з – болты для зажима образца.


Следует отметить, что контакты для подключения генератора и вольтметра должны располагаться как можно ближе к точкам подключения образца. Кроме того, разъемы для вольтметра и генератора необходимо подключать отдельными проводниками. Это требуется для уменьшения влияния собственного импеданса подводящих проводов на получаемый результат. Влияние собственного импеданса измерительной ячейки на высоких частотах переменного тока может привести к значительному искажению результатов измерения.

Для подключения выносного щупа анализатора импеданса на основании закреплен разъём стандарта SMA.

Упругие растягивающие напряжения создаются с помощью деформирующего устройства, представляющего собой подвес, перекинутый через неподвижный блок (рис. 11). Один край подвеса через гальваническую развязку закреплен на подвижном контакте измерительной ячейки, к другому концу подвешиваются гири необходимой массы. В качестве подвеса используется тонкая нить из кевлара. Максимальная величина растягивающих напряжений для проволочных образцов диаметром 175мкм равна 250Па и ограничена конструктивными особенностями ячейки.


Рис. 11 Схема измерительной ячейки и деформирующего устройства: а – измерительная ячейка; б – дюралюминиевый воздуховод; в – неподвижный блок; г – нить; д – наборный груз; е – термопара.


Учитывая, что вертикальное перемещение подвижного стержня при упругой деформации образца мало, а трением в оси подвижного стержня можно пренебречь, величину упругих растягивающих напряжений, приложенных к образцу, рассчитывают по формуле:

σ=mg/S,(7)


где m – масса грузов; g=9,8м/с2 – ускорение свободного падения; S – площадь поперечного сечения образца.

Для проведения температурных исследований был выбран способ нагрева потоком воздуха. Измерительная ячейка помещается на дюралюминиевый воздуховод таким образом, что образец находится в потоке воздуха (рис. 11). Воздух нагревается до необходимой температуры с помощью электронагревателя и продувается воздушным нагнетателем по воздуховоду. Питание электронагревательного элемента осуществляется программируемым источником постоянного тока Agilent N5770. Чтобы свести к минимуму колебания температуры воздушного потока, питание электронагревателя и нагнетателя осуществляется стабилизированным током, стенки воздуховода теплоизолированы. Для контроля температуры и равномерности нагрева образца используется две термопары хромель-копель, рабочие спаи которых расположены над концами образца. Свободные концы термопар вынесены из зоны нагрева и теплоизолированы.

Для создания внешнего квазистатического магнитного поля используется пара колец Гельмгольца, в центре которых располагается воздуховод с ячейкой. Питание колец Гельмгольца осуществляется от программируемого источника тока Agilent N6700B с модулем N6774, имеющим возможность изменения полярности, что позволяет производить измерения по полному циклу 0кА/м → +12кА/м → 0кА/м → -12кА/м → 0кА/м.

Так как исследуемые материалы относятся к магнитомягким, то при проведении данных исследований требуется обеспечить компенсацию геомагнитного и техногенного магнитных полей. Для решения данной задачи используются три пары колец Гельмгольца, расположенных во взаимно перпендикулярных плоскостях. Питание каждой пары колец осуществляется от отдельного источника питания. Контроль компенсации производится с помощью датчика Холла. А также приняты следующие шаги: спираль электронагревателя выполнена из бифилярной намотки, электронагреватель вместе с двигателем воздушного нагнетателя максимально удален от измерительной ячейки.

С целью минимизации внешних электрических наводок дюралюминиевый воздуховод соединен с шиной заземления.

Управление и передача данных с анализатора импеданса, а также с источников питания колец Гельмгольца и электронагревательного элемента осуществляется персональным компьютером по интерфейсу GPIB. Сигнал с термопар преобразуется в цифровой вид и передается в персональный компьютер с помощью АЦП L-791 фирмы L-Card.

Также частью установки является программа для ПК, осуществляющая управление приборами, сбор и сохранение результатов измерений. Программа написана на Visual Basic 6.0 и использует библиотеки функций компании Agilent. Программа, управляя источниками питания, устанавливает согласно заданному алгоритму температуру образца и внешнее магнитное поле, после чего запрашивает результаты измерений с анализатора импеданса и сохраняет их на жесткий диск. В ходе проведения измерений программа отслеживает стабильность температуры образца и при необходимости производит ее корректировку. Программа позволяет устанавливать такие параметры эксперимента, как скорость нагрева, максимальная температура, шаг изменений температуры, величина и направление внешнего магнитного поля. Алгоритм проведения эксперимента заключается в последовательном изменении величины магнитного поля в заданных пределах и запросе результатов измерений импеданса с анализатора. Результаты серии измерений сохраняются в виде удобной для обработки в математических пакетах матрицы в текстовом файле.

Раньше для измерения импеданса образца использовалась другая методика. Согласна этой методике образец подключается к генератору синусоидальной ЭДС последовательно с балластным резистором Rб, сопротивление которого на три порядка больше, чем измеряемые значения импеданса образцов Z. Поэтому действующее значение тока в цепи можно считать определяемым только величиной балластного сопротивления и выходным напряжением на генераторе Uг:


I=Uг/Rб.(8)


Тогда модуль полного сопротивления образца можно рассчитать по формуле:


Z=Uобр/I,(9)


где Uобр – падение напряжения на образце (рис. 12, 13).

В качестве источника переменного тока использовался генератор IFR 2023А, который с помощью коаксиального кабеля подключен к измерительной ячейке. Частота переменного тока изменялась в диапазоне от 500кГц до 10МГц. Выходное напряжение генератора контролировалось вольтметром В7-35. Действующее значение силы тока, протекающего по образцу, в большинстве экспериментов составляло 30мА. Падение напряжения на образце измерялось с помощью высокочастотного вольтметра ВЗ-52. Щуп вольтметра с помощью переходника был подключен к соответствующему разъему измерительной ячейки.

Кольца Гельмгольца были подсоединены к генератору линейно изменяющихся напряжений (ГЛИН), что позволяло создавать изменяющееся во времени магнитное поле. Напряженность магнитного поля, создаваемого кольцами Гельмгольца, определялась по падению напряжения на образцовом резисторе Rкг. Резистор был включен последовательно с кольцами Гельмгольца. Его сопротивление было выбрано таким, чтобы падение напряжения на нем численно соответствовало напряженности магнитного поля в Эрстедах. Резистор был выполнен из манганинового сплава и приведен в тепловой контакт с массивными радиатором для минимизации температурного дрейфа.


Рис. 12 Принципиальная схема измерения импеданса: Г – генератор ВЧ тока; Vr – вольтметр, измеряющий выходное напряжение генератора; Rб – балластное сопротивление; Z – образец; Vобр – вольтметр, измеряющий напряжение на образце.

Рис. 13 Блок-схема экспериментальной установки: а – измерительная ячейка; б – кольца Гельмгольца; в – воздуховод; г – электронагревательный элемент; д – электронагнетатель; е – компенсационный куб; ж – термопара.


Для питания электронагревателя использовался источник тока Agilent 5770A. Воздушный нагнетатель питался от источника SHENZEN MASTECH HY3020E. Оба источника работали в режиме стабилизации по току. Сбор экспериментальных данных осуществлялся с помощью платы аналого-цифрового преобразователя (АЦП) LCard L 791. К плате были подключены:

1.                 Аналоговый выход вольтметра ВЗ-52, измеряющего падение напряжения на образце;

2.                 Выводы резистора Rкг для определения напряженности магнитного поля;

3.                 Концы термопары, измеряющие температуру тока.

Если провести сравнение данных методик измерения МИ, то предпочтительней первая, более современная, которая намного упрощает задачу исследователя. Экспериментатору требуется лишь подготовить образец, поместить его в измерительную ячейку, закрепить саму ячейку, а также установить параметры измерений. Получив результаты в виде матриц, построить необходимые зависимости.


3. Практическое применение магнитного импеданса


3.1 Введение


Аморфные ферромагнитные сплавы являются удобным объектом для исследования физических свойств магнитомягких ферромагнетиков ввиду их способности приобретать заданные магнитные свойства под влиянием термической и термомагнитной обработки. Различные физические эффекты в ферромагнитных материалах известны уже давно и нашли самое широкое применение в науке и технике, в том числе при разработке и создании разнообразных датчиков и преобразователей физических величин.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать