Эффект магнитоимпеданса

По некоторым магнитным параметрам к аморфным сплавам приближаются нанокристаллические ферромагнитные сплавы, которые могут иметь значительно большую, чем аморфные сплавы, рабочую температуру.

Применение аморфных и нанокристаллических ферромагнетиков позволяет не только улучшить существующие датчики магнитных величин, но и создавать принципиально новые измерительные датчики и преобразователи.

Разработка и создание более совершенных датчиков и преобразователей магнитного поля остается важной задачей современной науки. Автоматизация процессов производства, развитие технической базы научных исследований, создание современных технологий требуют более совершенных методов контроля и измерения различных параметров, в том числе магнитных и механических. В геофизике, для обнаружения и измерения слабых магнитных полей естественного и искусственного происхождения, требуются высокочувствительные датчики магнитного поля, способные измерять одновременно три компоненты магнитного поля и работать в широком интервале температур. В низкочастотной радиосвязи существует проблема создания малогабаритных параметрических антенн с узкой диаграммой направленности. В биологии и медицине требуются миниатюрные датчики сверхслабых магнитных полей, длительное время работающие при нормальных условиях.

Уникальные магнитные и механические характеристики ферромагнетиков позволяют создавать на их основе высокочувствительные датчики и преобразователи слабого магнитного поля, а также разнообразные датчики механических величин.

Высокая магнитная проницаемость и малые потери на перемагничивание позволяют с помощью различных методов преобразования получить экстремально низкий порог чувствительности датчиков магнитного поля, выполненных на основе аморфных ферромагнитных сплавов, расширить диапазон частот измеряемого магнитного поля. На основе применения аморфных ферромагнетиков возможно улучшение параметров аппаратуры считывания информации с магнитных носителей, позволяющее в несколько раз увеличить разрешающую способность и количество записываемой информации.

Механические датчики на основе магнитоимпедансного эффекта в аморфных и нанокристаллических сплавах отличаются более высокой чувствительностью и долговечностью.

Миниатюрные магнитные датчики магнитного поля на основе магнитоимпедансного эффекта в аморфных ферромагнитных сплавах могут служить базовым элементом для создания приборов магнитной дефектоскопии и различных устройств автоматики и робототехники. Как и датчики Холла, они могут иметь размеры около 1мм и не содержат катушек индуктивности. При соответствующем выборе аморфного сплава и при его термомагнитной или термомеханической обработке перекрываемый с помощью магнитоимпедансного датчика диапазон постоянного или низкочастотного магнитного поля может достигать 100Э.

В то же время магнитоимпедансный датчик магнитного поля выгодно отличается от датчика Холла высокой температурной стабильностью, поэтому приборы на его основе не требуют никаких схем температурной компенсации или стабилизации. Более того, магнитоимпедансный датчик имеет всего два контакта и его подключение к электрической схеме прибора осуществляется всего двумя проводами, а не четырьмя, как в датчике Холла, что значительно проще и надежнее в случае исполнения выносного варианта датчика.

Более подробно остановимся на принципе действия датчиков на основе магнитного импеданса.


3.2 Датчики магнитного поля и механических величин на основе магнитоимпедансного эффекта [4]

3.2.1 Датчики магнитного поля на основе магнитного импеданса

Значительное падение напряжения на аморфных и нанокристаллических проводниках под действием магнитного поля при прохождении по проводнику переменного или импульсного электрического тока позволяет применить магнитоимпедансный эффект в разнообразных датчиках магнитного поля.

При работе в качестве датчиков магнитного поля целесообразно выводить начальную рабочую точку на середину линейного участка характеристики, для чего требуется продольное магнитное поле смещения. Оно может быть создано как катушкой или постоянным магнитом, так и созданием магнитного поля анизотропии при изготовлении или термомеханической обработке аморфного сердечника датчика, или при приложении к нему механического напряжения. Когда аморфный ферромагнетик выводится на участок максимального импеданса при помощи механического растягивающего напряжения, внешнее магнитное поле уменьшает импеданс на участке с отрицательной крутизной. При этом вернуться на участок с положительной крутизной с помощью внешнего постоянного магнитного поля не удается.

Дифференциальный коэффициент преобразования лучших магнитоимпедансных датчиков составляет 0,5-2,0 мкВ/нТл на узком участке возрастающей ветви характеристики при подходе к максимуму изменения импеданса. На спадающей ветви характеристики чувствительности значительно, на один-два порядка, ниже. Чувствительность на участке возрастания импеданса зависит от размеров датчика.

К недостаткам датчика магнитного поля на основе магнитоимпедансного эффекта относятся: чувствительность к механическим воздействиям, большая величина гистерезиса, необходимость в магнитном поле смещения или соответствующем механическом напряжении.

К положительным моментам можно отнести возможность создания датчика без использования катушек индуктивности, относительную простоту датчика. Магнитоимпедансные датчики магнитного поля могут найти достойное применение в различных технических устройства при работе в диапазоне средних магнитных полей от 0,2Э до 200Э.


3.2.2 Датчики механических величин на основе магнитоимпедансного эффекта в аморфных ферромагнитных сплавах

Сильная зависимость импеданса проводника из аморфного ферромагнитного сплава от приложенного к этому проводнику механического напряжения позволяет создать малогабаритные датчики механических величин, которые не содержат катушек индуктивности (рис. 14). Отсутствие кристаллической решетки в аморфных ферромагнетиках делает их более чувствительными к внешним факторам, в том числе механическим, так как величина энергии анизотропии, которую необходимо преодолеть с помощью внешнего воздействия, значительно ниже, чем в кристаллических ферромагнетиках.


Рис. 14 Простейшие конструкции механических датчиков на основе магнитоимпедансного эффекта в аморфных ферромагнитных сплавах: А.Ф.П. – аморфный ферромагнитный проводник; К1 и К2 – контакты.


Магнитоимпедансные датчики имеют выходной сигнал в виде амплитуды переменного напряжения высокой частоты и поэтому могут иметь плоскую амплитудно-частотную характеристику в диапазоне частот от 0 до единиц МГц. Серьезным преимуществом механических датчиков на основе магнитоимпедансного эффекта является их высокая термостабильность. Такие датчики имеют высокую чувствительность, так как в них максимум изменения сигнала ΔU/U, соответствующий Δl/l или Δσ/σ, имеет место на начальном участке характеристики магнитоимпедансного эффекта, когда Δl/l в результате продольной магнитострикции составляет всего лишь сотые доли от величины магнитострикции насыщения.

На основе магнитоимпедансного эффекта возможно создание приемо-передающих высокочастотных акустических устройств.

В магнитоимпедансных датчиках прием и возбуждение осуществляется по току, а не по напряжению. Поэтому магнитоимпедансные датчики являются низкоомными широкополостными элементами, что во многих случаях может оказаться удобным при согласовании с акустической нагрузкой и с применением электронной схемой. На базе магнитоимпедансного акустического приемо-передающего устройства, выполненного на основе аморфных ферромагнитных лент или пленок, могут быть созданы адаптивные высокочастотные приемо-излучатели упругих волн с управляемой диаграммой направленности и хорошим согласованием с акустической средой.

Возбуждение высокочастотных упругих колебаний в аморфных ферромагнитных лентах и пленках при магнитоимпедансном эффекте позволяет создать акусто-оптические модуляторы и дефлекторы для систем оптической обработки информации. При работе на отражение в поляризованном свете такие акусто-оптические элементы могут одновременно выполнять функцию поворота плоскости поляризации отраженного света.


Заключение


В данной работе был проведен анализ и синтез работ, посвященных теме исследования, в ходе которых были выявлены следующие теоретические положения:

- импеданс проводника определяется магнитоиндуктивной составляющей и толщиной скин-слоя;

- для существования ГМИ-эффекта принципиальным является магнитная мягкость материала;

- величина упругих растягивающих напряжений приводит к изменению максимального и начального значения импеданса проводника;

- характер изменения максимального и начального значения импеданса при изменении упругих напряжений и температуры зависит от частоты переменного тока, протекающего по образцу;

- существует три температурных диапазона, в которых влияние упругих растягивающих напряжений на ГМИ-эффект в аморфных фольгах имеет различный характер.

В данной работе описаны две методики исследования магнитного импеданса. Автор работы на практике ознакомился с одной из установок, находящейся в Лаборатории магнитных явлений на базе ИГПУ, и принципом её работы.

Были рассмотрены возможности практического применения магнитного импеданса, а именно возможности создания датчиков на его основе. Основными достоинствами применения ГМИ-материалов является их чувствительность к внешним факторам, относительно низкая стоимость изготовления и скорость обрабатывания.


Список используемой литературы


1.                 Бозорт Р. Ферромагнетизм./Пер. с англ./Под ред. Е.И. Кондорского, Б.Г. Лившица. – М.: Изд-во иностранной литературы, 1956.

2.                 Боровик Е.С., Еременко В.В., Мильнер А.С. Лекции по магнетизму. – 3-е изд., перераб. и доп. – М.: Физматлит, 2005.

3.                 Курляндская Г.В. Гигантский магнитный импеданс и его связь с магнитной анизотропией и процессами намагничивания ферромагнитных структур: докт. дис. – Екатеринбург, 2007.

4.                 Сокол-Кутыловский О.Л. Исследование магнитоупругих свойств аморфных ферромагнетиков с целью их применения в магнитных и механических датчиках: докт. дис. – Екатеринбург, 1997.

5.                 Ч. Киттель Введение в физику твердого тела.

6.                 Антонов А.С. Магнитоимпеданс ферромагнитных микропроводов, тонких пленок и мультислоев при высоких частотах: докт. дис. – М.:2003.

7.                 Моисеев А.А. Эффект магнитоимпеданса в магнитомягких проволоках на основе Fe и Co: дипломная работа.

8.                 Анашко А.А., Семиров А.В., Гаврилюк А.А. Магнитоимпедансный эффект в аморфных FeCoMoSiB лентах// Журнал технической физики. – 2003. – том 73, вып. 4.

9.                 Букреев Д.А. Воздействие внешних факторов на ГМИ-эффект в низкострикционных фольгах VITROVAC 6025Z: маг. дис.

10.            Priota K.R., Kraus L., Fendrych F., Svec P. GMI in Stress-Annealed Co77Fe8B15 Amorphous Ribbonsfor Stress-Sensor Applications// The 14th European Conference on Solid-State Transducers, Copenhagen, Denmark. – 2000. - P. 753-754

11.            Bydzovsky J., Kollar M., Svec P., Kraus L., Jancaric V. Magnetoelastic prooerties of CoFeCrSiB amorphous ribbons – a possibility of their application// J. Electrical Engineering. – 2001. – V. 52. – No. 7-8. – P. 1-5.

12.            Bordin G., Buttino G., Cecchetti A., Poppi M. Temperature dependence of magnetic properties and phase transitions in a soft magnetic Co-based nanostructured alloy// J. Phys. D: Appl. Phys. – 1999. – V. 32. – P. 1795-1800.

13.            А.В. Семиров, А.А. Моисеев, В.О.Кудрявцев, Д.А. Букреев, Г.В. Захаров Установка для исследования влияния температуры и механических напряжений на магнитоимпеданс магнитомягких материалов.


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать