|
||||
|
||||
|
Рис 2.2
3. Эффект Холла в ферромагнетиках.
В ферромагнетиках на электроны проводимости действует не только внешнее, но и внутреннее магнитное поле:
В = Н + 4pМ
Это приводит к особому ферромагнитному эффекту Холла. Экспериментально обнаружено, Ex= (RB + RаM)j, где R — обыкновенный, a Ra — необыкновенный (аномальный) коэффициент Холла. Между Ra и удельным электросопротивлением ферромагнетиков установлена корреляция.
4. Эффект Холла в полупроводниках.
Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлежности полупроводника к n- или p-типу, так как в полупроводниках n-типа знак носителей тока отрицательный, полупроводниках p-типа – положительный. На рис. 4.1 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей — ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока. Любопытно, что у некоторых металлов знак Uн соответствует положительным носителям тока. Объяснение этой аномалии дает квантовая теория.
|
||||||
|
||||||||||
|
|
Рис 4.1
5. Эффект Холла на инерционных электронах в полупроводниках.
Предсказан новый физический эффект, обусловленный действием силы Лоренца на электроны полупроводника, движущегося ускоренно. Получено выражение для поля Холла и выполнены оценки холловского напряжения для реальной двумерной гетероструктуры. Выполнен анализ возможной схемы усиления холловского поля на примере двух холловских элементов, один из которых — генератор напряжения, а второй — нагрузка.
Известен опыт Толмена и Стюарта, в котором наблюдался импульс тока j, связанный с инерцией свободных электронов. При инерционном разделении зарядов в проводнике возникает электрическое поле напряженностью E. Если такой проводник поместить в магнитное поле B, то следует ожидать появления эдс, аналогичной эффекту Холла, обусловленной действием силы Лоренца на инерционные электроны.
В проводнике, движущемся с ускорением dvx/dt, возникает ток jx и поле Ex
, (1)
, (2)
где s = enm — проводимость, m — подвижность. В магнитном поле B(0; 0; Bz) возбуждается поле Ey = (1/ne) jxBz или
(3)
Последнее выражение эквивалентно Ey = ExmBz.
Наиболее подходящий объект для экспериментального наблюдения эффекта — двумерные электроны в гетеросистеме n-AlxGa1-xAs/GaAs. В единичном образце (1x1 см2) в поле 1 Тл и m@ 104 см2 (В * с) для dvx/dt @ 10 м/с2 следует ожидать сигнал Vy@ 6*10-11B, что вполне доступно для современной техники измерений.
Рассмотрим одну из возможностей усиления эффекта на примере двух холловских элементов, один из которых (I) является генератором поля Холла, а второй (II) —нагрузкой. Схема соединений холловских элементов I и II показана на рисунке.
Итак, в магнитном поле Bz (направление которого на рисунке обозначено знаком Å) в первом холловском элементе (I) возбуждается ток j(1)x , поле E(1)x и холловское поле E(1)y, даваемые выражениями (1)–(3). Замкнув потенциальные (холловские) контакты X1-X1 на токовые контакты T2-T2 холловского элемента II, в последнем дополнительно к первичному полю E(2)x = E(1)x, определяемому выражением (2), имеем и поле E(1)y. Так что результирующее поле имеет два компонента — E(2)x = E(1)x+ E(1)y. Это возможно, если холловский элемент I рассматривать как генератор напряжения, нагруженный на холловский элемент II. В этом случае должен выполняться режим ”холостого хода”, для чего необходимо выполнить условие R(X1-X1)<<R(T2-T2), где R — сопротивление между соответствующими контактами. В таком случае в холловском элементе II возбуждается поле
E(2)y=(E(1)y+ E(1)y)mBz (4)
Учитывая соотношение E(1)y=E(1)xmBz, получаем
E(2)y=(1+mBz)mBzE(1)x (5)
Непосредственное наблюдение эффекта, видимо, затруднено. Более реально осуществить опыты с вибрацией образца в магнитном поле. Полезный сигнал ey при этом может быть отделен от наводки e*y по квадратичной зависимости от частоты колебаний w (наводка пропорциональна 1-й степени частоты колебаний).
В самом деле, для данной геометрии опыта (см рисунок) в магнитном поле B(0; 0; Bz) при изменении координаты x со временем по закону x = x0 cos wt, где w — частота задающего генератора, нагруженного на пьезоэлемент, и x0 — амплитуда колебаний последнего, имеем из соотношения (3)
(6)
где ly — расстояние между холловскими контактами образца (X1-X1) т. е. Ey = Eyly. Паразитная наводка e*y, возникающая в соединительных проводах в соответствии с законом электромагнитной индукции Фарадея, определяется выражением
(7)
где l*y — эффективная длина соединительных проводников, включающих образец в схему измерений. Таким образом, полезный сигнал ey имеет отличительные особенности по отношению к наводке e*y. Первая особенность это пропорциональность величине w2, тогда как e*y»w. Одновременно ey во времени изменяется синфазно, а e*y — противофазно напряжению задающего генератора. Существенно отметить, что масса, входящая в выражения (1)-(3), это масса свободного электрона; величина же подвижности m определяется эффективной массой.