Электрические ракетные ионные двигатели


то форма граничной поверхности плазмы не зависит от режима работы ионного источника и однозначно определяется величиной критерия подобия у.

Рассмотрим конструкцию ионно-оптической системы (см. рис. 2.3), с помощью которой возможно сформировать ионные пучки с большим током (на тяжелых рабочих веществах до 20 – 30 А, на водороде – до 100 А). Формирующий, ускоряющий и замедляющий электроды выполнены в виде плоской сетки из металлических прутков, закрепленных своими концами в соответствующей паре кварцевых державок. Прутки ускоряющего и замедляющего электродов крепятся на своих кварцевых державках с помощью металлических обойм. Обоймы размещены на кварцевых державках таким образом, что при разогреве они могут удлиняться, не вызывая механических напряжений, и обеспечивают электрический контакт прутков электрода с источником питания. Пазы в кварцевых державках для крепления прутков имеют определенный шаг. Концы кварцевых державок длиной 20 – 40 мм служат для крепления электродов и для высоковольтной изоляции. Крепление и юстировка формирующего электрода осуществляется посредством прижатия Державок винтами к передней крышке разрядной камеры и винтами – через пружины к поверхности юстировочной пластины. В этом случае прутки электрода имеют непосредственный контакт с разрядной камерой. Крепление и юстировка ускоряющего и замедляющего электродов осуществляются так же, как и формирующего, только концы их кварцевых державок прижимаются к крышке разрядной камеры через соответствующие вкладыши, обеспечивающие зазор между электродами. Так как нарезка пазов в кварцевых державках производится одновременно, то прижатие их винтами к котировочной пластине обеспечивает надежную юстировку электродов (совпадайте щелей).

Замедляющий и ускоряющий электроды выполнялись диаметром 2 мм, формирующий – из прутков диаметром 2; 1 и 0,5 мм с шагом 4 мм (соответственно изучались три варианта ионно-оптической системы). Прутки – диаметром 1 и 0,5 мм натягивались индивидуальными пружинами. Ускоряющая длина составляла 2 мм в первом варианте и 2,5 мм во втором и третьем вариантах ионно-оптической системы. Максимальная полезная длина прутков (под пучком) составляла 150 мм. Полезная длина кварцевых державок (ширина области под пучком) также была равной 150 мм. Следовательно, максимальная площадь поперечного сечения в исследованной системе составляла 225 см2.

Экспериментальное исследование характеристик описанной системы проводилось совместно с изученным ранее газоразрядным источником ионов, работавшим на висмуте. Температура электронов в источнике поддерживалась равной 2 – 3 В. В соответствии с теоретически полученной формулой (2.57) ускоряющее напряжение при экспериментах принималось равным 3 – 4,5 кВ.

Эксперименты показали, что оптимальное значение критерия подобия 70пт> при котором угол расходимости ионного пучка минимален, не зависит от ускоряющего напряжения (изученный диапазон от 4,5 до 14 кВ) и составляет при диаметре пучков формирующего электрода 2; 1; 0,5 мм соответственно около 0,16; 0,26 и 0,27.

Постоянное значение 7 опт указывает на справедливость изложенной выше теории подобия для случая формирования ионных пучков из плазмы при соблюдении условия (2.57). Зная 7Опт> можно определить оптимальное значение ускоряющего напряжения при заданных плотностях йодного тока и рассчитать оптимальные параметры геометрически подобных конструкций ускоряющей системы для любых рабочих веществ.

Другим параметром, характеризующим ионно-оптическую систему, является геометрическая прозрачность формирующего электрода

Как уже указывалось, в современных ионных источниках коэффициент использования массы достаточно высок (до 0,9 – 0,95), но все же некоторое количество атомов рабочего вещества поступает в ионно-оптическую систему с тепловыми скоростями. В результате в ионно-оптической системе могут протекать такие процессы, как рассеяние и перезарядка ионов на атомах, ионизация атомов ионами и др. В условиях ионных двигателей при относительных скоростях ионов и атомов 103 – 104 м/с наиболее вероятным процессом является резонансная перезарядка ускоренных ионов на нейтральных атомах. При перезарядке ускорений ион приобретает электрон и становится быстрым атомом, продолжающим движение со скоростью, равной скорости иона в момент перезарядки. Атом, потерявший электрон, становится вторичным ионом, начальная скорость которого равна тепловой скорости атома (около 103 м/с).

В трехэлектродной ионно-оптической системе большинство вторичных ионов не может преодолеть потенциальный барьер между ускоряющим и замедляющим электродами, ионы остаются в «потенциальной яме» и в конце концов попадают на ускоряющий электрод, который имеет наиболее низкий отрицательный потенциал. Величина потенциального барьера в замедляющем зазоре ионно-оптической системы определяется коэффициентом замедления ионного пучка



где Фк – абсолютная величина потенциала ускоряющего электрода; Фан – потенциал фокусирующего электрода; потенциал замедляющего электрода принимается равным нулю.

Энергия вторичных ионов в плоскости ускоряющего электрода может составлять несколько сотен электронвольт. Бомбардируя ускоряющий электрод, вторичные ионы вызывают его катодное распыление. Наряду с вторичными ионами ускоряющий электрод при плохой фокусировке ионного пучка может перехватывать и первичные ионы, обладающие энергией в несколько килоэлектронвольт и вызывающие особенно интенсивное распыление ускоряющего электрода.

Эксперименты проводились на многощелевой ионно-оптической системе. Формирующий, ускоряющий и замедляющий электроды были выполнены из вольфрамовых прутков диаметром 1 мм при шаге расположения прутков 3 мм. Ускоряющий и замедляющий зазоры составляли соответственно 2 и 1 мм. Ионно-оптическая система имела пять щелей шириной 2 мм и длиной 30 мм. Формирование ионных пучков осуществлялось из аргоновой плазмы. Измерялся ток на ускоряющий электрод для различных расходов аргона при постоянных токе пучка, ускоряющем и замедляющем напряжениях (т.е. при неизменной форме пучка и фокусировке). Постоянство тока пучка при изменении расхода обеспечивалось регулированием тока эмиссии катода газоразрядного источника ионов.

Вопросы нейтрализации объемного заряда ионных пучков

Для нормальной работы ионных двигателей в условиях космического пространства необходима нейтрализация объемного заряда и тока истекающих ионных пучков. Нейтрализация объемного заряда и тока требуется также и в плазменных двигателях с анодным слоем, которые рассматриваются в следующей главе. Эта задача решается с помощью специального нейтрализатора – источника электронов, который устанавливается на выходе из ускоряющей системы.

Система нейтрализации должна удовлетворять следующим основным требованиям.

1.                Энергетическая цена электрона (отношение расходуемой мощности к выходному электронному току) должна быть минимальной.

2.                Газовая эффективность источника электронов (отношение электронного тока к расходу рабочего вещества) должна быть возможно
более высокой.

3.                Схема электропитания нейтрализатора должна быть простой, вероятность безотказной работы и конструктивный ресурс не должны
быть ниже, чем у остальных элементов ЭР Д.

В ходе создания наземных прототипов ионных двигателей и плазменных двигателей с анодным слоем были исследованы различные виды нейтрализаторов: проволочные прямоканальные катоды, плазменные источники электронов и полые катоды.

В наибольшей степени этим требованиям отвечают плазменные нейтрализаторы и нейтрализаторы на основе полого катода. На рис. 2Л8 изображен газоразрядный плазменный нейтрализаторе Он состоит из эмитирующего элемента (катода) 1 в виде трубочки из гексаборида лантана с малым внутренним отверстием, стартового нагревателя 2, выполненного из вольфрамовой проволоки, тепловых экранов 3 и поджигающего электрода 4. Подача газообразного рабочего вещества осуществляется по трубчатому молибденовому токоподводу 5, обладающему малой теплопроводностью, После предварительного прогрева и срабатывания поджигающего электрода в газообразном рабочем веществе между катодом и ионным пучком загорается низковольтная дуга. Образующаяся плазма истекает из нейтрализатора, создавая так называемый «плазменный мост», охватывающий часть ионного пучка, по которому электроны беспрепятственно поступают в ионный пучок.

На рис» 2,19 изображена схема диафрагмированного газопроточного полого катода – нейтрализатора, обладающего наилучшими характеристиками по цене иона и газовой эффективности. Нейтрализатор может работать в авторежиме, т.е. без нагрева катода от постороннего источника

Внутренняя вставка полого катода изготовлена из материала с высокой термоэмиссионной способностью (обычно из гексаборида лантана). Типичные размеры нейтрализатора: диаметр внутренней полости 3 – 10 мм, длина 5–15 мм, диаметр выходного отверстия 0,5 – 3 мм, отношение площади выходного отверстия в катоде So к площади внутренней поверхности катода Sn равно 3–10- з _ 2–10-2« Электрические 86 параметры: расход ксенона в токовых единицах /^ = 0,03… 2,5 А, минимальное разрядное напряжение 14 В, выходной электронный ток /, = 0,1… 50 А.

Если пренебречь сравнительно небольшими радиационными потерями, то энергетическая цена электрона се практически равна разрядному напряжению Up. Для определения газовой эффективности нейтрализатора удобно использовать соотношение


(2-63)


в которое в явном виде входит геометрический параметр S0/Sn. Для выбора оптимальных геометрических характеристик нейтрализатора, термоэмиссионных характеристик материалов и определения газовой эффективности необходимо рассчитывать вольтамперную характеристику нейтрализатора.

При расчете вольтамперной характеристики принимаются следующие предположения о процессах, происходящих в полом катоде:



\РВ

1)  электроны поступают в разряд с внутренних стенок катода в результате термоэмиссии;

2)  ионизация атомов производится в основном первичными (быстрыми) электронами, эмитированными стенками, и ускоренными в прикатодном слое разряда.

3)  первичные электроны, потеряв при неупругих столкновениях с атомами энергию порядка потенциала ионизации, становятся медленными и не принимают участия в процессах ионизации;

Страницы: 1, 2, 3, 4, 5, 6, 7



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать