Попытки применение законов классической электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существенные трудности. Стремясь разрешить их, А. Эйнштейн пришел (1905) к теории относительности. Эта теория окончательно опровергла идею существования эфира, наделённого механическими свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классической механики.
На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классической теорией электричества. Квантовая теория электромагнитных процессов – квантовая электродинамика – была создана во 2-й четв. 20 века. Квантовая теория вещества и поля уже выходит за пределы учения об электричестве, изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.
С открытием новых фактов и создание новых теорий значение классического учения об электричестве не уменьшилось, были определены лишь границы применимости классической электродинамики. В этих пределах уравнения Максвелла и классическая электронная теория сохраняют силу, являясь фундаментом современной теории электричества. Классическая электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоретического и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла.
ЭЛЕКТРИЗАЦИЯ ТЕЛ. СТРОЕНИЕ АТОМА ЛЕГЕНДА ОБ ОТКРЫТИИ ЭЛЕКТРИЗАЦИИ
Древние греки очень любили украшения и мелкие поделки из янтаря, названного ими за его цвет и блеск «электрон» -что значит «солнечный камень». Отсюда произошло, правда много позже, и самое слово электричество.
Способность янтаря электризоваться была известна давно. Впервые исследованием этого явления занялся знаменитый философ древности Фалес Милетский. Вот как об этом рассказывает легенда.
Дочь Фалеса пряла шерсть янтарным веретеном, изделием финикийских мастеров. Как-то, уронив веретено в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли к веретену, потому что оно все еще влажно, она принялась вытирать его еще сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением этого явления к отцу. Фалес понял, что причина в веществе, из которого сделано веретено, и в первый же раз, как к пристани Милета подошел корабль финикийских купцов, он накупил различных янтарных изделий и убедился, что все они, будучи натерты шерстяной материей, притягивают легкие предметы, подобно тому, как магнит притягивает железо.
Получение и обнаружение электрических зарядов. Вы можете повторить опыт дочери Фалеса Милетского. Янтарные изделия для этого иметь не обязательно — воспользуйтесь любым стеклянным или пластмассовым предметом.
Потрите, например, пластмассовую расческу о газету. Поднесите ее к соринкам, шерстинкам, маленьким кусочкам бумаги. Какое явление вы наблюдаете? Как оно называется? Отличается ли эта расческа чем-нибудь от той, которую не натирали?
Наличие электрического заряда на расческе можно проверить с помощью следующих самодельных приборов:
1. Соберите из двух деревянных палочек, дощечки и пластилина штатив, подобный тому, который показан на рисунке 81. Чувствительной частью прибора, обнаруживающего наличие электрического заряда, может служить легкая бумажная бабочка, которую надо подвесить на шелковой нити к штативу.
Натрите стеклянный или пластмассовый предмет газетой или шелковой материей. Поднесите его к бабочке. Пронаблюдайте, как бабочка притянется к наэлектризованному предмету.
Вырежьте из картона фигурку «человечка» и приколите кнопкой к ее плечу подвижную, вырезанную из тонкой папиросной бумаги руку. Расширьте немного прокол, чтобы рука могла свободно вращаться. Укрепите «человечка» на подставке или на нити. Подносите к нему наэлектризованные тела. Человечек будет вытягивать руку, указывая ею на электрический заряд (рис.1).
•3. Вырежьте из фольги фигурку «человечка». Можно для этого использовать также тонкий картон, оклеенный фольгой. В этом случае удобнее вначале оклеить картон, а потом вырезать из него ножницами фигурку. Подвесьте ее на шелковой нитке, руки вставьте в прорезь, сделанную у плеча (руки изготовьте из того же материала, что и фигурку).
Прикоснувшись к «человечку» наэлектризованным телом, вы увидите, как он разведет руки в стороны (рис. 2). Дотронувшись до «человечка» пальцем, убедитесь, что он опускает руки. Объясните наблюдаемое явление.
Как называется прибор, модель которого вы сделали?
ЭЛЕКТРИЗАЦИЯ ТРЕНИЕМ НА ПРОИЗВОДСТВЕ И В БЫТУ
Технический прогресс не только расширяет возможности человека, его власть над природой, но одновременно ставит множество новых проблем. Так, например, сегодня в различных отраслях промышленности используются сильные электрические поля, широко внедряется в быт синтетика, а синтетические материалы обладают способностью накапливать электрические заряды. И приходится решать проблемы, связанные с влиянием электрических полей на технологические процессы, на организм человека.
Вот несколько примеров.
На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстро движущейся бумажной ленты. Были приглашены ученые. Они выяснили, что причина заключалась в электризации ленты при трении ее о валки.
Такая «самопроизвольная» электризация весьма опасна, так как может стать причиной пожара.
При трении о воздух электризуется самолет. Поэтому после посадки к самолету нельзя сразу же приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолет «разряжают»: опускают на землю металлический трос, соединенный с обшивкой самолета, и разряд происходит между землей и концом троса.
Разряды электричества возникают и тогда, когда человек ходит по полимерным покрытиям полов современной квартиры, синтетическим коврам или снимает с себя нейлоновую одежду.
Есть ли способы и средства для борьбы с накоплением электрических зарядов? Безусловно, есть.
На производстве — это тщательное заземление станков, машин, применение токопроводящих пластиков для полов, увлажнение воздуха, использование различного рода «нейтрализаторов» (по условиям производства — индукционных, электрических, радиоизотопных, электроаэрозольных и др.).
В домашних условиях устранить заряды статического электричества довольно легко, повышая относительную влажность воздуха квартиры до 60—70% (для этого можно использовать электрические увлажнители). Электризация устраняется, если к воде, которой протирают пластиковые полы, добавить гидрофильные вещества, например хлорид кальция, а также если протирать электризующиеся поверхности глицерином. Химическая промышленность сейчас выпускает препарат «Антистатик», который снимает электрический заряд с синтетической одежды.
При соприкосновении наэлектризованного тела с заземленной поверхностью происходит электрический разряд. Влияние его на организм человека также изучается.
В результате исследований, проведенных в Ленинграде, было установлено, что разрядный ток силой до 20 мкА не вызывает заметных физиологических сдвигов в организме человека даже при длительном воздействии. Следовательно, разряды, возникающие в быту и при большинстве технологических процессов в результате соприкосновения наэлектризованного человеческого тела с заземленной поверхностью, не опасны для здоровья.
Следует отметить, что электризация синтетического белья, возникающая во время носки, оказывается даже полезной. Например, известно, что поливинилхлоридное белье помогает при лечении некоторых болезней.
Сильные электрические поля используются в медицине при создании электроаэрозолей. Они представляют собой лекарственные или другие биологические вещества, распыленные в электростатическом поле и обладающие целым рядом свойств, выгодно отличающих их от обычных аэрозолей: капельки электроаэрозоля сильнее измельчаются, меньше слипаются, при определенных условиях они глубже проникают в легкие (вплоть до мельчайших легочных ячеек — альвеол), создавая в них запасы постепенно всасывающихся лекарственных или биологически активных веществ.
ОПЫТ ИОФФЕ И МИЛЛИКЕНА
В начале XX в. советский физик Абрам Федорович Иоффе и американский ученый Роберт Милликен (независимо друг от друга) проделали опыты, доказавшие существование частиц, имеющих наименьший электрический заряд, и позволившие измерить этот заряд.
В чем заключался опыт, вам известно из учебника. Мы хотим рассказать немного о жизни и деятельности этих физиков и процитировать отрывки из их книг, где они рассказывают о своем эксперименте.
Абрам Федорович Иоффе родился в 1880 г. на Украине в г. Ромны. Окончил Петербургский технологический институт в 1902 г. и уехал в Германию продолжать образование. Он учился в Мюнхенском университете, который окончил в 1905 г. Его учителем был знаменитый В. Рентген. В 1906 г. Иоффе вернулся в Россию с дипломом доктора философских наук Мюнхенского университета и начал научно-педагогическую деятельность в Петербургском политехническом институте. В 1915 г. ему присвоили степень доктора Петербургского университета за исследование упругих и электрических свойств кварца.
После Октябрьской революции по его предложению и под его руководством во вновь созданном Государственном институте рентгенологии и рентгенографии организуется физико-технический отдел. Обстановка, в которой пришлось вести работу, была сложной: шла гражданская война; молодое Советское государство находилось в кольце врагов, которых поддерживали капиталисты всего мира; голод; разруха; старые научные кадры не все приняли революцию, часть уехала за границу; научные связи с другими странами почти полностью прерваны. И в это время А. Ф. Иоффе при содействии А. В. Луначарского создал в Петрограде научное учреждение, которое стало родоначальником большого числа научно-исследовательских институтов нашей страны.
В 1921 г. физико-технический отдел Государственного института рентгенологии и рентгенографии выделился в самостоятельный Физико-технический институт, руководителем которого стал А. Ф. Иоффе. А впоследствии из этого института выделились и стали самостоятельными научными учреждениями Украинский физико-технический институт, Уральский физико-технический институт, Институт химической физики и многие другие.
Видные ученые нашей страны И. В. Курчатов, П. Л. Капица, Н. Н. Семенов, Л. Д. Ландау, Б. П. Константинов, И. К. Кикоин и многие другие начинали свою научную работу под руководством А. Ф. Иоффе, считают себя его учениками и всегда с большой теплотой и любовью вспоминают о нем.