Изобретением В. В. Петрова заинтересовались очень многие. В самом деле, ведь им был открыт совершенно новый источник света! Электрическая дуга давала невиданно яркий, белый свет. Как заманчиво было использовать ее для освещения!
Однако осуществить эту мысль на практике оказалось не так легко. Дело в том, что для получения электрической дуги требуется большая сила тока, а существовавшие в то время источники электрического тока — батареи гальванических элементов -давали, как правило, слабый ток.
Было и другое затруднение. При горении дуги угольные стержни постепенно сгорают, и расстояние между ними увеличивается. Наконец наступает момент, когда дуга внезапно гаснет: электрический ток между углями прерывается. Таким образом, чтобы получить постоянное горение дуги, необходимо поддерживать одно и то же расстояние между углями, сдвигать их по мере сгорания.
Как это делать?
Сдвигать угли просто руками неудобно и невыгодно: для этого у каждой лампы должен постоянно находиться человек. Нужно придумать какие-то механизмы, которые автоматически поддерживали бы необходимое расстояние между углями. Изобретатели предлагали различные регуляторы «дуговых электрических фонарей» (так были названы новые лампы, в которых свет давала электрическая дуга). Однако все эти регуляторы были неудобны для практического применения, и дуговые электрические лампы мало где использовались. Только в отдельных случаях -на маяках, на каких-либо празднествах или в физической лаборатории ученого — можно было увидеть лампу нового света.
Лишь через 70 лет известный русский электротехник В. Н. Чи-колев построил удобное и четко действующее приспособление для автоматической регулировки угольных стержней дуговых ламп. Однако дуговые лампы и после этого не получили широкого распространения: лампа с механическим регулятором стоила очень дорого.
Рассказ второй
Русский свет
В 1876 г. в Лондоне на выставке точных физических приборов русский изобретатель Павел Николаевич Яблочков демонстрировал перед посетителями необыкновенную электрическую свечу. Похожая по форме на обычную стеариновую свечу, она горела ослепительно ярким светом. В том же году «свечи Яблочкова» появились на улицах Парижа Помещенные в белые матовые шары, они давали яркий приятный свет. В короткое время чудесная свеча завоевала всеобщее признание. «Свечами Яблочкова» освещались лучшие гостиницы, улицы и парки крупнейших городов Европы.
Привыкшие к тусклому свету свечей и керосиновых ламп, люди прошлого века восхищались «свечами Яблочкова». Новый свет называли «русским светом», «северным светом». Газеты западноевропейских стран писали: «Свет приходит к нам с севера — из России», «Россия — родина света».
Что же представляет собой «свеча Яблочкова»? По существу, это та же дуговая лампа, но у нее нет никаких регуляторов. «Мое изобретение,— писал Яблочков,— состоит в совершенном удалении всякого механизма, обыкновенно встречающегося в электрических лампах...»
Задачу регулировки углей при горении лампы Яблочков решил гениально просто. Он поместил угли не против друг друга, а рядом, на таком расстоянии, чтобы между ними при пропускании тока возникала дуга. Чтобы дуга горела только вверху, у концов угольные стержни были разделены слоем, не проводящим электричество, например слоем глины или гипса.
Такое устройство дуговой лампы действительно напоминает собой обыкновенную свечу . Для запала «свечи» применялась тонкая пластинка из материала, плохо проводящего электрический ток. Эта пластинка соединяла друг с другом верхние концы углей. При пропускании электрического тока через «свечу» пластинка сгорала и между концами углей возникала дуга. По мере сгорания углей изолирующий слой между ними постепенно испарялся. Угли же за время горения находились на одном и том же расстоянии друг от друга. Их не нужно было сдвигать ни вручную, ни с помощью каких-либо сложных приспособлений!
«Электрическая свеча Яблочкова», простая и дешевая, горела ярким ровным светом.
Знаменитый изобретатель неустанно работал над усовершенствованием своих «свечей». Изменяя химический состав изолирующей массы, Яблочков создавал лампы со светом различных оттенков. Он соединял несколько «свечей» так, что, когда гасла одна, автоматически загоралась другая. Он конструировал самые различные по силе света лампы.
Но это было не все. Совершенствуя свое изобретение, П. Н. Яблочков старался избавиться от одного существенного недостатка. Дело в том, что при работе на постоянном токе один уголь «свечи» сгорает вдвое быстрее, чем другой. Чтобы избежать неравномерного сгорания углей, Яблочков один из стержней делает более толстым. Однако это не так удобно и невыгодно. Изобретатель упорно ищет другое решение задачи. И находит его. Он использует для питания «свечей» не постоянный, а переменный ток. В этом случае оба угля сгорают равномерно. Таким образом, П. Н. Яблочков — первый человек, практически применив-1 ший переменный ток в электротехнике! До его работ считалось, | что переменный ток не годится для широкого практического 1 применения.
Кроме того, он решил задачу так называемого «дробления электрического света». Яблочков разработал такую схему соеди-1 нения дуговых ламп в цепь, при которой один источник тока мог обслужить уже не одну, а большее число ламп. Это достигалось с помощью особых индукционных катушек, работающих по принципу трансформатора (устройства, понижающего и повышаю- I щего напряжение электрического тока).
Таким образом, П. Н. Яблочковым впервые был применен в электротехнике и принцип трансформации электрической энергии.
К 1880 г. «русский свет» освещал многие города мира.
В России «электрические свечи» освещали улицы Москвы, Петербурга, Нижнего Новгорода, Полтавы и других городов. >
Рассказ третий
Угольная лампа накаливания
В начале 70-х гг. XIX в. Александр Николаевич Лодыгин создал новые электрические лампы — лампы накаливания, те самые, которые уже к началу нашего века завоевали весь мир. Так, у «свечей Яблочкова», кроме старых соперников — газовых рожков,— появился новый.
«Свечи Яблочкова» не выдержали соперничества и очень скоро начали повсеместно гаснуть. И хотя в наши дни «электрическая свеча Яблочкова» является уже достоянием истории, мы не должны забывать, что именно работы русского изобретателя П. Н. Яблочкова дали электрическому свету путевку в жизнь. «Электрической свече» мы, бесспорно, обязаны тем, что удалось ввести электрический свет в повседневный обиход.
Уже давно, с самого начала XIX в., было известно, что электрический ток, проходя по проводнику, нагревает его.
Если сила тока большая, то проводник нагреется до температуры белого каления и даже может расплавиться. Это действие электрического тока и было использовано изобретателями новых электрических ламп — ламп накаливания.
Однако изготовить электрические лампы накаливания, которые давали бы достаточно яркий свет и в то же время работали продолжительное время, оказалось делом нелегким. Основная причина этого заключалась в том, что тонкие металлические проволочки, как правило, очень быстро плавились, как только их разогревали до необходимой температуры. Кроме того, раскаленные металлические нити окислялись в воздухе ив силу этого быстро «перегорали».
Работая над конструированием ламп, электротехники пробовали изготовить нити накала из платины. Платина плавится только при температуре около 1750 °С и не окисляется, но этот материал был очень дорогим; в то же время при сильном нагревании платиновые нити все равно размягчались.
Многочисленные попытки сделать практически пригодную лампу накаливания долгое время оканчивались неудачей. И лишь в 1872—1873 гг. замечательный русский электротехник А. Н. Лодыгин создает первую удачную конструкцию новой электрической лампы.
Первая лампа накаливания Лодыгина была устроена так: в небольшой стеклянный шар впаяны две медные проволочки, соединенные с источником тока. Между ними закреплен тонкий угольный стержень. Как только через медные проволочки и угольный стержень пропускали электрический ток, стержень благодаря большому сопротивлению раскалялся и светился ярким светом. Чтобы он не сгорал быстро, из стеклянного шара откачивали воздух. Такие лампы горели недолго — 20—30 мин.
Однако уже в следующие два года А. Н. Лодыгин создает новые, улучшенные образцы электрических ламп накаливания , которые были способны гореть несколько часов.
Достоинства лампы накаливания по сравнению с дуговыми были очевидны. Лампы накаливания давали мягкий и яркий свет, потребляли мало электрической энергии, были просты и совершенно безопасны в использовании, сравнительно недороги и поэтому удобны для освещения жилых помещений.
В 1873 г. Лодыгин демонстрировал свои лампы в Петербурге. Лампами нового света была освещена одна из улиц русской столицы.
«Масса народа любовалась этим освещением, этим огнем с неба,— писал один из современников Лодыгина о его лампах.— Лодыгин первый вынес лампу накаливания из физического кабинета на улицу».
В этом же году в Технологическом институте Лодыгин показал, что его лампы могут применяться в самых различных условиях: и в сигнальных железнодорожных фонарях, и в электрических фонарях для подводных работ, и в фонарях для каменноугольных шахт и т.п. Через три года Электрический фонарь Лодыгина для подводных работ был применен при строительстве подводных частей моста через Неву. Каждый такой фонарь можно было очень легко зажечь и погасить отдельно от других.
Русская Академия наук в 1874 г. присудила Лодыгину за лампу накаливания Ломоносовскую премию. В решении по этому вопросу указывалось, что А. Н. Лодыгин сделал открытие, «обещающее произвести переворот в каждом вопросе об освещении».
Изобретение Лодыгина действительно произвело переворот. Именно благодаря его работам в каждом уголке мира засияла электрическая лампа.
В 1890 г. А. Н. Лодыгин предложил изготовлять лампы накаливания с металлическими нитями из тугоплавких металлов — вольфрама, молибдена, осмия, иридия, палладия. В 1900 г. лампы Лодыгина с металлической нитью накаливания демонстрировались на Всемирной выставке.
Практическое применение лампы с вольфрамовой нитью получили после 1910 г., когда был найден способ изготовления тянутых нитей из вольфрама.
Первые лампы с вольфрамовой нитью довольно быстро перегорали. Начались поиски причин быстрой «смерти» ламп. Оказалось, что на вольфрамовый волосок вредно влияет воздух, который все же оставался в лампе после его откачивания. Тогда при изготовлении электрических ламп с вольфрамовой нитью стали особенно тщательно следить за тем, чтобы воздух был по возможности полностью удален из баллона лампы.
Но появилась новая беда: вольфрамовая нить при высокой температуре довольно сильно испарялась и в результате этого очень быстро разрушалась. Тогда для уменьшения испарения металла баллон лампы решили наполнить газом, не действующим на раскаленную нить, таким, как аргон и азот. Распыление нити стало меньше. Уменьшение разрушения вольфрамовой нити позволило поднять температуру ее накала выше, чем в пустотных лампах. Отсюда большая яркость и экономичность газонаполненных ламп.
В таком виде и существует в наши дни электрическая лампа накаливания.
Последнее время учеными ведутся работы по изготовлению нитей накала из сверхтугоплавких веществ. К таким веществам относятся, например, химические соединения карбид-тантал и карбид-цирконий. Нить накала, изготовленная из этих веществ, способна выдерживать температуру свыше 4000 °С.
Не забыта в наше время и дуговая лампа. Ученые много сделали для совершенствования электрических дуговых ламп. Вытесненные с улиц, эти мощные лампы успешно применяются в прожекторах, на маяках, в кинопроекционных аппаратах.
Рассказ четвертый
Семидесятые годы прошлого столетия — это время перехода электрической лампы из лаборатории ученых в дома, на производство. Большую роль в этом сыграли работы Т. Эдисона.
Во-первых, он усовершенствовал лампу Лодыгина, увеличив разрежение в баллоне и применив в качестве нитей накаливания обугленные бамбуковые волокна. Эдисон придумал также патрон к лампе и выключатель — приспособления, которыми мы пользуемся до сих пор. Но сама лампа изменилась: теперь в ней накаливается не бамбуковое волокно, а вольфрамовая нить. Это усовершенствование внес в эдисонову лампу Лодыгин. Так дважды скрещивались творческие замыслы двух изобретателей.
Во-вторых, Эдисон построил генератор электрической энергии (динамо-машину), способный питать электрическим током несколько десятков ламп так, что они могли гореть независимо друг от друга (решил задачу дробления электроэнергии).
В-третьих, изобрел счетчик электроэнергии, который позволял определять израсходованную электроэнергию. В работе счетчика Эдисон использовал химическое действие тока. Вы знаете, что при прохождении тока через раствор электролита (например, раствор медного купороса) на катоде выделяется вещество (в данном случае Медь). Чем больше зарядов проходит через раствор электролита, тем больше вещества выделяется на катоде.
Счетчик состоял из сосуда с раствором медного купороса, в который были опущены две пластины. Когда счетчик включали в сеть, одна пластина заряжалась положительно (анод), другая — отрицательно (катод). В конце какого-нибудь промежутка времени, например каждого месяца, определяли массу меди, выделившейся на катоде, и по законам электролиза рассчитывали израсходованную электроэнергию.
В настоящее время используют счетчики, действие которых основано на явлении движения проводника в магнитном поле.
В-четвертых, Эдисоном были изобретены плавкие предохранители и многое другое, что позволило широко использовать электрическое освещение.
Именно поэтому Эдисона называют отцом современного электрического освещения.
Рассказ пятый
Современная электрическая лампа накаливания
Но кроме электрических ламп, используемых для освещения, существуют и другие типы ламп. ламп снабжен штыковым затвором. Их вставляют в специальный патрон с пружиной и вырезами для штифтов и поворачивают.
Кроме этих ламп, наша промышленность выпускает и другие. Такие, как лампы-гиганты, применяемые для морских маяков. Некоторые из них имеют высоту более метра, массу свыше 7 кг, а мощность 50 000 Вт. Существуют и лампы-малютки массой 0,02 г и мощностью 0,4 Вт. Такие лампы используют в медицине.
Современная лампа накаливания — очень удобный, безопасный и дешевый источник света. Но в ней лишь 7% энергии превращается в энергию видимого света. Будущее принадлежит совсем иным лампам — лампам дневного света (об их устройстве и работе вы узнаете в старших классах), которые более экономичны и дают свет, более похожий на дневной.
Интересно знать
В древних архивах сохранились записи, свидетельствующие о том, что императора Нерона, страдавшего ревматизмом, придворные врачи лечили электрованнами. Для этого в деревянную кадку с водой помещали рыб, способных испускать электрические разряды. Находясь в такой ванне, император в течение предписанного врачами времени подвергался действию электрических разрядов и полей. Лечение проходило успешно.
Впервые вне лаборатории и классной комнаты электрическая дуга была применена в 1845 г. в Парижской опере, чтобы воспроизвести эффект восходящего солнца. Успех был полный!
В прошлом веке в Швейцарии была изобретена «электрическая нянька». Изобретатель предложил в детской кроватке под простыню подкладывать две тонкие металлические сетки, изолированные друг от друга сухой прокладкой и соединенные с низковольтным источником тока и звонком. Как только прокладка намокала, электрическая цепь замыкалась и начинал звенеть звонок, извещая мать о том, что нужно сменить пеленки.
В Таиланде при строительстве линий электропередач перед электриками неожиданно возникли две проблемы. Первая — как предохранить линии высокого напряжения от обезьян, которые, подражая монтерам, легко влезают на опорные столбы и, играя проводами, производят короткие замыкания. Вторая — как обезопасить линии от слонов, выворачивающих опоры.
Юным техникам, вероятно, хорошо знакомы лампочки для карманных фонарей. Они меньше осветительных по размерам и рассчитаны на напряжение 3,5 В. Лампы, применяемые в устройствах, подвергающихся тряске (в автомобилях, киноаппаратах), не имеют винтовой нарезки на цоколях. Цоколь этих ламп снабжен штыковым затвором. Их вставляют в специальный патрон с пружиной и вырезами для штифтов и поворачивают (.
Кроме этих ламп, наша промышленность выпускает и другие. Такие, как лампы-гиганты, применяемые для морских маяков. Некоторые из них имеют высоту более метра, массу свыше 7 кг, а мощность 50 000 Вт. Существуют и лампы-малютки массой 0,02 г и мощностью 0,4 Вт. Такие лампы используют в медицине.
Современная лампа накаливания — очень удобный, безопасный и дешевый источник света. Но в ней лишь 7% энергии превращается в энергию видимого света. Будущее принадлежит совсем иным лампам — лампам дневного света (об их устройстве и работе вы узнаете в старших классах), которые более экономичны и дают свет, более похожий на дневной.
Интересно знать
В древних архивах сохранились записи, свидетельствующие о том, что императора Нерона, страдавшего ревматизмом, придворные врачи лечили электрованнами. Для этого в деревянную кадку с водой помещали рыб, способных испускать электрические разряды. Находясь в такой ванне, император в течение предписанного врачами времени подвергался действию электрических разрядов и полей. Лечение проходило успешно.
Впервые вне лаборатории и классной комнаты электрическая дуга была применена в 1845 г. в Парижской опере, чтобы воспроизвести эффект восходящего солнца. Успех был полный!
В прошлом веке в Швейцарии была изобретена «электрическая нянька». Изобретатель предложил в детской кроватке под простыню подкладывать две тонкие металлические сетки, изолированные друг от друга сухой прокладкой и соединенные с низковольтным источником тока и звонком. Как только прокладка намокала, электрическая цепь замыкалась и начинал звенеть звонок, извещая мать о том, что нужно сменить пеленки.
В Таиланде при строительстве линий электропередач перед электриками неожиданно возникли две проблемы. Первая — как предохранить линии высокого напряжения от обезьян, которые, подражая монтерам, легко влезают на опорные столбы и, играя проводами, производят короткие замыкания. Вторая — как обезопасить линии от слонов, выворачивающих опоры.
«Багдадская батарея». Возьмите обычный лимон, воткните в него оцинкованный гвоздь (это будет «минус») и медную монету («плюс»). Такая «батарейка» способна выдать примерно 1 вольт. Четырех лимонов достаточно, чтобы зажечь маленький светодиод.
ЗАКЛЮЧЕНИЕ
В настоящее время электрическая энергия имеет огромное применение во всех сферах человеческой деятельности Электроэнергия , вырабатываемое огромными атомными; гидро; тепло; газотурбинными и другими электростанциями транспортируется по линиям электропередач (ЛЭП) к городам; поселкам промышленным районам и объектам освещает улицы и дома , обогревает , крутит электрические машины, при помощи которых мощные электровозы перевозят составы с всевозможными грузами, вращает гребные валы огромных ледоколов и военных подводных лодок, при помощи электроэнергии работают всевозможные краны и конвейеры, троллейбусы и трамваи перевозят пассажиров используя для движения также электроэнергию, всевозможные электроприборы которые используют в медицине и в быту которые являются первейшими помощниками, электроэнергия обеспечивает работу практически всех приборов связи включая и космическую, телевидение и радио, звучание музыки.
Другими словами – человечество и не мыслит своё существование на нашей планете без электрической энергии.
Список использованной литературы
БСЭ, том 30, стр. 48-49, столбцы 130-133
Книга для чтения по физике: Учебное пособие для учащихся 6-7 классов средней школы
Составитель И Г. Кириллова стр.148 171
Журнал «Мир Фантастики» № 9 сентябрь 2006г стр. 131