Электрооборудование станций и подстанций

За мощность S2НОМ принимают мощность всех 3х фаз однофазных ТН, соединенных по схеме звезды и удвоенную мощность однофазного ТН, включенного по схеме неполного треугольника.

Для подсчета S2 рекомендуется табличная форма (9). Перечень измерительных приборов для расчетной цепи принимается на основании рекомендаций [ ]. Расчетную нагрузку приборов для упрощения расчетов не разделяют по фазам, тогда получают


Таблица 9. “Расчет нагрузки ТН”

Наименование и тип прибора

Мощность одной катушки прибора

Число катушек

cosj

sinj

Р, Вт

Q, В×А

Вольтметр Э-335

2,0 В×А

1

1,0

0

20,0

-

Ваттметр Д-335

1,5 В×А

2

1,0

0

3,0

-

Счетчик активной энергии И-680

2,0 В×А

2

0,38

0,925

4,0

9,7

Счетчик реактивной энергии И-676

3,0 В×А

2

0,38

0,925

6,0

14,5








Итого…

При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало, однако сопротивление проводов создает дополнительную потерю напряжения.

Согласно ПУЭ потери напряжения в проводах от трансформаторов напряжения к счетчикам не должны превышать –0,5%, а в проводах к щитовым измерительным приборам – 3%.

Площадь сечения проводов принимают:

1,5 мм2 – медных, 2,5 мм2 – алюминиевых.

Выбор и расчет токоведущих частей аппаратов, шин, проводов и кабелей

Выбор и расчет токоведущих частей аппаратов и проводников – важнейший этап проектирования любой электроустановки, от которого в значительной степени зависит надежность ее работы.

При выборе токоведущих частей необходимо обеспечить выполнение ряда требований, вытекающих из условий работы.

Аппараты и проводники должны:

1.  Длительно проводить рабочие токи без чрезмерного повышения  температуры;

2.  Противостоять кратковременному электродинамическому и  тепловому действию токов КЗ;

3.  Выдерживать механические нагрузки, создаваемые собственной  массой и массой связанных с ними аппаратов, а также усилия, возникающие в результате атмосферных воздействий (ветер, гололед), это требование учитывается при расчете ЛЭП и РУ;

4.  Удовлетворять требованиям экономичности электроустановки;

Один из важнейших вопросов – обеспечение термической стойкости аппаратов и проводников, что является следствием потерь мощности в них.

Составляющими этих потерь являются:

1.                 Потери в токоведущих частях, обмотках, контактах;

2.                 Потери от вихревых токов в металлических частях, особенно в ферромагнитных;

3.                 Потери в магнитопроводах трансформаторов, электромагнитов;

4.                 Потери в диэлектриках.

Для аппаратов и проводников эти потери являются сложной функцией тока, напряжения и частоты. Не учитывая, что при протекании по проводника частоты и напряжение меняется незначительно, то можно считать, что потери мощности пропорциональны квадрату тока.

Различают два основных режима нагрева токоведущих частей:

·                    Длительный нагрев рабочим током; этот режим характеризуется тепловым равновесием, в нем проводники приобретают определенную (установившуюся температуру);

·                    Кратковременный нагрев током КЗ; в этом режиме температура проводника непрерывно растет, так как теплота выделяется во много раз больше, чем в нормальном режиме, она не успевает отводиться и тепловое равновесие не устанавливается.

Допустимые температуры в каждом режиме различны и определяются рядом требований;

1.                 Обеспечить экономически целесообразный срок службы изоляции;

2.                 Обеспечить надежную работу контактной системы;

3.                 Не допускать заметного ухудшения механически свойств металла токоведущих частей;

4.                 Не допускать разрушение изоляции.

Рассматривая вопрос о допустимых температурах аппаратов и проводников, необходимо определить понятия о наблюдаемых температурах и температурах в наиболее нагретых точках аппаратов (машин).

Под наблюдаемыми температурами понимают температуры, найденные простым измерением. Они на 5…15 0С отличаются от температуры, в наиболее нагретых точках.

Для кабелей длительно допустимые температуры определены в зависимости от номинального напряжения и конструкции кабеля:

·                    Для одножильных кабелей всех напряжений и 3х жильных кабелей 3 кВ – 800С; для трехжильных кабелей 6 кВ – 650С; 10 кВ – 600С; 20 и 35 кВ – 500С;

Допустимые конечные температуры для кратковременного нагрева при КЗ значительно выше допустимых температур при длительной работе, так как износ изоляции и интенсивность окисления контактов определяются не только температурой, но и длительностью теплового воздействия. Допустимые конечные температуры ( в 0С) при КЗ приведены ниже:

Неизолированные части аппаратов и проводников


Из меди и латуни

300

Из алюминия

200


Силовые кабели до 10 кВ включительно с бумажной изоляцией и эмалями:

Из меди

250

Из алюминия

200


Силовые кабели 20…35 кВ с бумажной изоляцией175

Силовые кабели с резиновой изоляцией, а так же провода

С резиновой и полихлорвиниловой изоляцией200

Таким образом, исходя из рабочего режима, токоведущие элементы выбирают по условиям рабочего режима и проверяют на термическую и электродинамическую стойкость при токах КЗ.

При выборе токоведущих частей по условиям рабочего режима учитываются два фактора:

·      Нагрев проводника длительным рабочим током;

·     требования экономичности установки.

Допустимая температура нагрева шин – 700С;

Температура окружающей среды – 250С; Превышение температуры шин над температурой окружающего воздуха – 450С.

Теплоотдача шин пропорциональна превышению ее температуры над температурой воздуха, а потеря энергии пропорциональна квадрату тока




где - нормированное и принимаемое превышение температуры шины над температурой воздуха.

Для шин прямоугольного сечения шириной до 60 мм, расположенных плашмя, допустимый ток снижается по сравнению с табличным значением на 5%, и шириной больше 60 мм – 8%. Для кабелей таблицы длительно допустимого тока составлены в расчете на одиночный кабель, проложенный в земле при температуре почвы +150С или на воздухе при температуре +250С. При других условиях необходимо вводить поправочные коэффициенты на температуру почвы, воздуха (К1) и на число кабелей в траншее (к2) [23, 59], то есть


IДОП=К1×К2× IДОП.


Кабели отходящих линий (к потребителям) прокладываются обычно в земле в траншеях. Кабели генераторных, трансформаторных цепей, РУ и линии к двигателям собственных нужд, как правило, имеют небольшую длину и прокладываются в кабельных каналах, туннелях, открытых шахтах, и их выбор по условиям длительного нагрева производится, как для кабелей, проложенных на открытом воздухе. Для кабелей прокладываемых к механизмам собственных нужд в котельном и турбинному цехах, следует учитывать высокую температуру воздуха в этих цехах.

При выборе сечения проводников, учитывающих условия рабочего режима, необходимо также учитывать расход проводникового материала и потери энергии в проводниках. При заданном рабочем токе увеличение площади сечения проводника связано с увеличением затрат на сооружение РУ, шинной или кабельной линий и соответствующих отчислений на амортизацию и ремонт. Но одновременно уменьшаются потери энергии, стоимость которых входит в суммарные эксплуатационные расходы. Последние являются, таким образом, функцией сечения проводника: из минимум определяет экономичное сечение проводника.

Плотность тока, соответствующую минимуму суммарных эксплуатационных расходов называют экономической плотностью тока, которое является функцией многих величин, из которых главными является стоимость проводникового материала, стоимость энергии и продолжительность использования максимальной нагрузки TMAX установки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать