Электрооборудование станций и подстанций

«Экономическая плотность тока, А/мм2» Таблица 10.

Проводник

ТМАХ, час

До 3000

3000-5000

Свыше 5000

Неизолированные провода и шины

Из меди

2,5

2,1

1,8

Из алюминия

1,3 (1,5)

11 (1,4)

1,0 (1,3)

Кабели с бумажной, провода с резиновой изоляцией и жилами

Из меди

3,0

2,5

2,0

Из алюминия

1,6 (1,8)

1,4 (1,6)

1,2 (1,5)

Кабель с резиновой и пластмассовой изоляцией и жилами:

Из меди

3,5

3,1

2,7

Из алюминия

1,9 (2,2)

1,7 (2,0)

1,6 (1,9)

Примечание. Числа без скобок относятся к Европейской части, Дальнему востоку. В скобках к Центральной Сибири.

В курсовом проекте при выборе кабелей к потребителям на генераторном напряжении можно принимать ТМАХ =3000…5000ч. Для шин связи генераторов и трансформаторов на ТЭС и АЭС ТМАХ³5000, на ГЭС - ТМАХ<3000 ч.

Таким образом по условиям рабочего режима определяется 2е площади сечения проводников: SЭК, при которой обеспечивается минимум эксплуатационных расходов;

SДОП – при которой температура проводника не превышает допустимой при длительной работе. Однако определяются эти две площади по разным рабочим токам. Первая – по рабочему току нормального режима.



вторая – по току утяжеленного режима, то есть SДОП определяется из условия I’ДОП³ IРАБ.УТЖ.

Принимается большая площадь сечения.

Под нормальным рабочим режимом установки или ее части понимают режим, предусматривающий план эксплуатации, при котором все элементы рассматриваемой установки находятся в рабочем состоянии. Утяжеленным называется режим при вынужденном присоединении вследствие их повреждения или в связи с профилактическим ремонтом. При этом рабочие токи других присоединений могут заметно увеличиваться и значительно превышать рабочие токи нормального рабочего режима. При отключении одной из двух параллельных ВЛ и КЛ или одного из 2х параллельно включенных трансформаторов нагрузка второй линии ли второго трансформатора увеличивается вдвое против ее нормального значения. Такой режим допускается в течении ограниченного времени (до нескольких суток) необходимого для восстановления нормального режима. Пропускную мощность линии, номинальную мощность трансформаторов выбирают с учетом таких режимов. При этом может быть использована перегрузочная способность силовых трансформаторов, кабелей 6-10 кВ и некоторых других элементов. Рабочие токи в шинах и проводах РУ в утяжеленном режиме не должны превышать номинальных значений во избежание повреждения контактных соединений и аппаратов, к которым они примыкают.

Для того, чтобы определить расчетные рабочие токи присоединенной ВЛ и КЛ, необходимо найти распределение тока в сети для заданных нагрузок при нормальном режиме и при отключении одной из линии. Отношение расчетных токов утяжеленного и нормального режимов зависит от схемы сети: Обычно оно равно 1,5…2,0. Расчетные рабочие токи сборных шин зависят от рабочих токов присоединений, их взаимного расположения в РУ, а также от вида сборных шин (одиночные, двойные, кольцевые и тому подобное) и режима установки. Для выбора площади сечения шин по утяжеленному режиму следует выявить ожидаемые рабочие токи на отдельных участках РУ при наиболее неблагоприятных условиях. Если рабочие токи на этих участках резко различны, шины могут быть выбранными «ступеньками» – с площадью сечений, соответствующих рабочим токам участков. Площадь сечения шин должна быть достаточной для передачи рабочего тока наиболее мощного агрегата. В ЗРУ до 20 кВ включительно шины выполняют из полос прямоугольного сечения. Они более экономичны, чем с круглыми, так как при равной площади сечения имеют большую боковую поверхность охлаждения, меньший коэффициент поверхностного эффекта и больший момент сопротивления (по одной оси). Наибольшие размеры сечения однополосных алюминиевых шин 120×10 мм IДОП = 2070 А. При больших токах применяют многополосные шины – пакеты из 2х-3х полос на фазу. В многополосных шинах на переменном токе вследствие эффекта близости ток по сечению распространяется неравномерно. В 3х полосных пакетах в крайних полосах протекает до 40%, а в средней - 20% полного тока фазы.

При рабочих токах, превышающих допустимые для 2х полосных шин, следует применять коробчатые шины – пакет из 2х швеллеров на фазу , а при еще больших токах – трубчатые шины квадратного и круглого сечения.

Критерием термической стойкости аппарата и проводника является их конечная температура при КЗ, которая должна быть меньше допустимой. За время протекания тока КЗ температура проводника возрастает до 200…3000С, необходимо учитывать зависимость сопротивления проводника и его теплоемкости от температуры. Для определения конечной температуры проводника обычно используют вспомогательную функцию А, характеризующую связь между выделившейся в проводнике энергии и его температурой (рис. 7-1) «Кривые для определения температуры нагрева токами КЗ проводника из стали (1), алюминия (2), меди (3).

Количество, выделившейся в проводнике теплоты принято характеризовать импульсом квадратичного тока – (АН), при температуре в конце КЗ (АК), импульсом ВК и площадью сечения проводников S существует зависимость


АК-АН = ВК/S2,


откуда


АК = ВК/S2 +АН.








По значению АН определяют температуру QК в конце КЗ. Проводники термически устойчивы, если QК£QК.ДОП.

Чаще всего проводники проверяют на термическую стойкость по минимальной площади сечения проводника:


 


где АК.ДОП – величина характеризующая допустимое тепловое состояние проводника в конце КЗ при температуре QК.ДОП (QК.ДОП.=300 0С для медных проводников и при QК.ДОП.=200 0С для алюминиевых проводников); значение АН находится по кривым 7.1 при QК.ДОП.=70 0С.


«Значение коэффициента С»


QК.ДОП, 0С

С

Шины:

Из меди

300

170

Из алюминия

200

90

Из стали, не соединенными Непосредственно с аппаратом

400

65

Из стали, соединенной

Непосредственно с аппаратом

300

60

Кабель до 10 кВ с бумажной изоляцией и жилами:

Из меди

200

160

Из алюминия

200

90


Если нагрузка проводника меньше допустимой по условиям нагрева, то есть IН<IН. ДОП, то проводник будет нагреваться в нормальном режиме до температуры, меньше допустимой:


 

где Q0 – расчетная температура окружающей среды (+25 для шин , +150С для кабеля).

После определения SMIN условие термической стойкости проводника запишется в виде : SMIN£ SРАСЧ. , где SРАСЧ. – площадь сечения проводника, выбранная по условиям рабочего режима.

Импульс квадратичного тока КЗ для мощны современных генераторов при удаленном КЗ определяется [61]:


,


где tОТКЛ.= t3+ tВ, tЗ – время действия РЗ; tВ – полное время отключения выключателя; Tа – постоянная времени цепи КЗ.

Проверка шин на динамическую стойкость сводится к механическому расчету шинной конструкции при КЗ. Эл. динамические сила, возникающая при КЗ носит колебательный характер и имеет периодическую составляющую с частотой 50 Гц и 100Гц. Эти силы приводят шины и изоляторы, представляющие собой динамическую систему, в колебательное движение. Деформация элементов конструкции и соответствующие напряжения в материала зависят от составляющей электродинамической силы и от собственной частоты элементов, приведенных в колебание.

Особенно большие напряжения возникают в условиях резонанса, когда собственные частоты системы шины-изоляторы оказываются близки к 50 и 100 Гц. В этом случае напряжения в материале шин и изоляторов могут в 2…3 раза превышать напряжения, рассчитанные по максимальной электродинамической силе при КЗ, вызванной ударным током КЗ.

Если же собственные частоты системы меньше 30 или более 200 Гц то мианического резонанса не возникает и проверка шин на электродинамическую стойкость производится в предположении, что шины и изоляторы являются статической системой с нагрузкой, равной максимальной электродинамической силе при КЗ.

При проектировании новых РУ с жесткими шинами, определяется частота собственных колебаний по следующим выражением:


 для алюминиевых шин.

 для медных шин,


где l – пролет между изоляторами, м;

J – момент индукции поперечного сечения шины относительно оси, перпендикулярной направлению изгибающей силы, см4;

S- площадь сечения шины, см2.


Изменяя длину пролета и форму сечения шин, добиваются того , чтобы механический резонанс был исключен, то есть чтобы n0 >200 Гц. Если этого добиться не удается, то производится специальный расчет шин с учетом динамических усилий, возникающих при колебаниях шинной конструкции.

При расчете шин как статической систем, исходя из допущения, что шина каждой фазы является многопролетной балкой, свободно лежащей на жестких опорах с равномерно распределенной нагрузкой. В этом случае –изгибающий момент определяется выражением



где f- сила, приходящаяся на единицу длины шины, Н/м.

В наиболее тяжелых условиях находится средняя фаза, которая принимается за расчетную; за расчетный вид КЗ принимаются 3х фазные.

Максимальная сила, приходящаяся на единицу длины средней фазы при 3х фазном КЗ.



где iУ – ударный ток КЗ, А.

а – расстояние между осями смежных фаз, м:

Напряжение в Мпа возникающее в материале шины,



где W- момент сопротивления шины, м3.


В графической части проекта схемы электрических соединений подстанции выполняется однолинейной на листе ватмана формата 1 576×814 мм. Условные графические обозначения должны быть сделаны в соответствии с Единой системой конструкторской документации. Компоновка всех элементов должна быть выполнена, такой, чтобы получился более наглядный и выразительный чертеж с правильным соотношением размеров обозначений машин, аппаратов и измерительных приборов, четкими пояснениями к ним.

План подстанции в разрезе по ячейке трансформатора выполняется на миллиметровой бумаге формата 22-24. При выполнении конструктивных чертежей следует использовать [1, гл. 10; 3, #6-3, 6-5; 5, #5-3, 26-4, 26-5].

Список литературы


1.  Васильев А.А, Крючков И.П., Наяшкова Е.Ф., и др. Электрическая часть станций и подстанций: Учебник для Вузов / Под редакцией А.А. Васильева- М. Энергия, 1980 г-608 стр.

2.  Неклепаев Б.Н. «Электрическая часть станций»- М. Энергия, 1976 г-475 стр.

3.  Рожкова Л.Д., Козулин В.В. Электрооборудование станций и подстанций - М. Энергия, 1987 г-600 стр.

4.  Усов С.В. Электрическая часть электростанций, - М. Энергия, 1977 г-420 стр.

5.  Справочник по электроснабжению предприятий. Промышленные электрические сети./ Под общей редакцией Федорова А.А и Сербинского Г.В, - М. Энергия, 1980 г-576 стр.

6.  Гук Ю.Б. и др. «Проектирование электрической части станций и п/станций» Л. Энергоатомиздат, 1985 г – 312 с.

7.  «Электрическая часть станций и по/станций»: Справочные материалы для курсового и дипломного проектирования /Под редакцией Б.Н. Неклепаева. – М.-Энергия, 1986

8.  Методические указания по выбор трансформаторов на п/ст 35…220 кВ для курсового и дипломного проектирования. -Кострома, КГСХА, 1997 г.

9.  Методические указания по выбору эл. аппаратов для курсового и дипломного проектирования.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать