II РАЗРАБОТКА СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ НПС
Система электроснабжения должна обеспечивать стабильную и непрерывную подачу электроэнергии к НПС "Суторминская". Так как НПС является потребителем I категории [3], то ее питание должно осуществляться от двух независимых, взаиморезервируемых источников.
Исходными данными при разработке проекта электроснабжения объектов нефтяной и газовой промышленности являются величина электрической нагрузки потребителей, а также место расположения ближайших источников электроэнергии и их параметры. Такими источниками, как правило являются главные понижающие подстанции (ГПП) с двумя трансформаторами.
Основные условия проектирования рациональной схемы электроснабжения – надежность, экономичность и качество электроэнергии у потребителя. Для крупных предприятий наиболее надежной и экономичной является система электроснабжения с применением глубоких вводов, при которой сети 6-110 кВ максимально приближены к потребителям электроэнергии.
Система электроснабжения строится таким образом, чтобы все её элементы постоянно находились под нагрузкой, т.е. чтобы не было холодного резерва. Вместе с тем параллельно установленные трансформаторы и параллельные линии электропередачи должны работать раздельно, так как при этом снижаются токи короткого замыкания и удешевляются схемы коммутации и схемы релейных защит.
Согласно ПУЭ, потребители относятся к первой категории в отношении бесперебойности питания.
Это предъявляет к системе электроснабжения следующие требования:
· Электроснабжение должно осуществляться от двух независимых источников питания по двум линиям;
· Питание потребителей нефтеперекачивающей станции должно производится от двух трансформаторной подстанции, трансформаторы которой выбираются с учетом взаимного резервирования;
· Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР).
Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части.
2.2 Схема электроснабжения НПС
Рис. 2.1. Схема электроснабжения НПС
На рис. 2.1. в соответствии с заданием приведена схема электроснабжения НПС для перекачки нефти по трубопроводу.
Трансформаторы Т1 и Т2 35/10 кВ в нормальном режиме работают раздельно, каждый на свою секцию шин КРУ.
Автоматическое включение резерва на стороне низшего напряжения производится с помощью секционного выключателя. (Q4).
Питание подводится по двум одноцепным взаиморезервируемым ЛЭП 35кВ. Питание высоковольтных двигателей и трасформаторов 10/0,4кВ производится от двух, взаиморезервируемых секций шин КРУ (рис. 2.1).
Питание цепей защиты и управления электродвигателями и всего вспомогательного оборудования НПС на напряжение 220/380 В, осуществляется от трансформаторов собственных нужд, Т3 и Т4.
2.3 Расчет электрических нагрузок на стороне высшего напряжения трансформаторной подстанции 35/10 кВ при НПС
Для расчета электрических нагрузок на стороне ВН, воспользуемся методикой, разработанной институтом Гипротюменьнефтегаз. В основе метода используется модель распределения в виде двухступенчатой кратчайшей функции.
Расчетная активная мощность высоковольтных двигателей по этому методу определяется следующим образом:
при С £ 0,75 М (2.4.2)
при С > 0,75 М (2.4.3)
где (2.4.4)
(2.4.5)
где Кв - коэффициент включения, Кв = 0,84;
Кз - коэффициент загрузки двигателей, Кз = 0,76 – 0,84;
Рном-номинальная активная мощность единичного электродвигателя.
Примем Кз = 0,84, т. е. его максимальное значение. Тогда средняя мощность определится:
Максимальная мощность:
Разделим С на М и получим:
С/М = 6,42 / 9,1 = 0,70 < 0,75
Следовательно, расчетную активную мощность высоковольтных электродвигателей определим по формуле:
=0,9 соответственно заданию. Коэффициент мощности является опережающим, поэтому реактивная мощность принимается со знаком минус.
Реактивная мощность высоковольтных электродвигателей НПС равна:
(2.4.6)
Полная мощность высоковольтных электродвигателей составит:
(2.4.7)
2.4. Выбор числа и мощности трансформаторов
Число трансформаторов выбирается из соображений надежности в зависимости от категории электроснабжения потребителей.
Категорию проектируемого объекта по надежности электроснабжения принимают в соответствии с ПУЭ [13].
К первой категории относятся потребители, отключение электроснабжения которых влечет за собой опасность для жизни людей, ущерб народному хозяйству, повреждение оборудования, нарушение сложного технологического процесса.
К второй категории - массовый срыв выпуска продукции, простой рабочих, механизмов, промышленного транспорта, нарушение нормальной деятельности значительного количества городских жителей.
К третьей категории - все остальные потребители. Для потребителей третьей категории рекомендуется применять подстанцию с одним трансформатором.
Электроприёмники установок по добыче, подготовке и транспортировке нефти и газа практически все относятся к первой категории надежности. Для электроснабжения потребителей первой категории надежности должны быть предусмотрены два независимых источника электроснабжения.
Согласно руководящим документам для большинства объектов нефтяной и газовой промышленности в районах Западной Сибири с учетом сложности размещения и эксплуатации подстанций рекомендовано выбор единичной мощности трансформаторов и автотрансформаторов двухтрасформаторных подстанций производить из условия 100% резервирования электроснабжения потребителей. Сюда отнесены объекты нефтедобычи, переработки попутного газа, компрессорные станции магистральных газопроводов с газотурбинными приводными агрегатами, нефтеперекачивающие станции магистральных нефтепроводов.
Произведём выбор силовых трансформаторов. Выбираем силовые трансформаторы из условия:
где - полная максимальная нагрузка подстанции;
Выберем двухобмоточные масляные трансформаторы типа ТМ 10000/35, технические данные которых сведены в табл. 2.4
Таблица 2.4
Параметры трансформаторов ТМ 10000/35
Параметры |
Единицы измерения |
Данные |
Номинальная мощность, Sном |
|
10000 |
Номинальное напряжение обмотки ВН |
кВ |
35 |
Номинальное напряжение обмотки НН |
кВ |
10 |
Потери холостого хода, Рх |
кВт |
2,75 |
Потери короткого замыкания, Рк |
кВт |
18,3 |
Напряжение короткого замыкания, Uк |
% |
6,5 |
Ток холостого хода, Iх |
% |
1,5 |
Проверим, подходят ли выбранные трансформаторы с учетом потерь. Активные потери составляют 2 % от номинальной мощности. Реактивные потери составляют 10 % от номинальной мощности.
Полная мощность, с учетом потерь, в трансформаторах составит:
Следовательно, данный тип трансформаторов удовлетворяет нашим требованиям.
Коэффициент загрузки трансформаторов:
(2.5.10)
Для I категории , следовательно, соответствует.
III РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ
3.1. Расчет токов короткого замыкания в относительных единицах
Электрооборудование, устанавливаемое в системах электроснабжения должно быть устойчивым к токам КЗ и выбираться с учетом этих токов.
На рис. 3.2 приведена расчетная схема, а на рис. 3.3 схема замещения, построенная в соответствии со схемой на рис. 2.1.
В нормальном режиме все секционные вакуумные выключатели находятся в отключенном состоянии, силовые трансформаторы работают раздельно на отдельные секции шин.
Наиболее тяжелый режим работы может наступить при КЗ в момент перевода нагрузки с одного силового трансформатора на другой, т. е. когда секционный выключатель Q4 включен (рис. 3.2). Этот режим принят за расчетный.
Преобразовывать сложные схемы при помощи именованных единиц неудобно. В этом случае все величины выражают в относительных единицах, сравнивая их с базисными. В качестве базисных величин принимают базисную мощность Sб и базисное напряжение Uб. За базисную мощность принимают суммарную мощность генераторов, мощность трансформатора, а чаще число, кратное 10, например 100 МВ×А. За базисную мощность принимаем значение100 МВ×А.
В качестве базисного напряжения принимаем напряжение высокой ступени 35кВ - Uб1=37,5кВ и Uб2=10,5кВ - базисное напряжение на низкой стороне 10кВ. Составим расчётную схему и схему замещения цепи короткого замыкания. Ниже приведена схема электроснабжения НПС (рис. 3.2).
Рис. 3.2. Расчетная исходная схема
Cхема замещения имеет следующий вид:
Рис. 3.3. Схема замещения
Т.к. точка КЗ значительно удалена от источника питания и его мощность велика, по сравнению с суммарной мощностью электроприемников, то периодическая составляющая тока КЗ:
; (3.1.11)
Определим базисные токи (Iб) для каждой ступени трансформации:
-базисный ток на высокой стороне (3.1.12)
-базисный ток на низкой стороне (3.1.13)
Найдем сопротивления отдельных элементов сети в относительных единицах и подсчитаем суммарное эквивалентное сопротивление схемы замещения от источника до точки короткого замыкания:
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10