Проверять будем кабели, отходящие от ПГВ, так как для остальных КЛЭП не известны токи КЗ.
Проверка проводится по условию:
где с = 0,92 – термический коэффициент для кабелей с алюминиевыми однопроволочными жилами и бумажной изоляцией согласно [7], А×с2/мм2;
tотк – время отключения КЗ, с;
tа – постоянная времени апериодической составляющей тока КЗ, с;
F – сечение КЛЭП, мм2.
Рассмотрим расчет на примере КЛЭП ПГВ-ТП1
кА
Увеличим сечение до 95 мм2, тогда
кА > IКЗ = 9,213 кА,
что допустимо
Результаты проверки кабелей на термическую стойкость сведем в табл.18.
Таблица 18. Результаты проверки КЛЭП на термическую стойкость
Наименование КЛЭП |
F, мм2 |
Iтер, кА |
IКЗ, кА |
ПГВ-ТП1 |
70 |
7,2 |
9,213 |
ПГВ-ТП2 |
35 |
3,6 |
9,213 |
ПГВ-ТП3 |
35 |
3,6 |
9,213 |
ПГВ-ТП4 |
35 |
3,6 |
9,213 |
ПГВ-ТП5 |
35 |
3,6 |
9,213 |
ПГВ-ТП6 |
16 |
1,6 |
9,213 |
ПГВ-ТП7 |
70 |
7,2 |
9,213 |
ПГВ-ТП8 |
50 |
5,14 |
9,213 |
ПГВ-ТП10 |
70 |
7,2 |
9,213 |
ПГВ-ТП11 |
50 |
5,14 |
9,213 |
ПГВ-ТП12 |
25 |
2,57 |
9,213 |
ПГВ-ТП13 |
95 |
9,77 |
9,213 |
ПГВ-РП |
240 |
24,69 |
9,213 |
РП-ТП9 |
50 |
5,14 |
9,213 |
РП-ТП14 |
70 |
7,2 |
9,213 |
РП-ТП15 |
10 |
1,3 |
9,213 |
По режиму КЗ при напряжении выше 1 кВ не проверяются:
1. Проводники защищенные плавкими предохранителями не зависимо от их номинального тока и типа.
2. Проводники в цепях к индивидуальным электроприемникам, в том числе цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:
– в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;
– повреждение проводника при КЗ не может вызвать взрыва или пожара;
– возможна замена проводника без значительных затруднений.
3. Проводники к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются не ответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.
В остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.
Так как в нашем случае выполняются все выше изложенный условия в пунктах 1, 2 и 3 то сечение проводников увеличивать не будем.
Для проводников напряжением до 1 кВ приведенных в табл. 19 сечение увеличиваем до 95 мм2.
12. Расчет самозапуска электродвигателей
Самозапуск заключается в том, что при восстановлении электроснабжения после кратковременного нарушения электродвигатели восстанавливают свой нормальный режим работы. Отличительные особенности самозапуска по сравнению с обычным пуском:
– Одновременно пускается группа двигателей;
– В момент восстановления электроснабжения и начала самозапуска часть, или все электродвигатели вращаются с некоторой скоростью;
– Самозапуск обычно происходит под нагрузкой.
При кратковременном нарушении электроснабжения самозапуск допустим как для самих механизмов так и для электродвигателей.
Если невозможно обеспечить самозапуск двигателей, то в первую очередь необходимо обеспечить самозапуск для ответственных механизмов, отключение которых необходимо.
Расчет самозапуска синхронных двигателей:
В цехе № 15 установлены 6х500 СД. Из справочника выбираем двигатель марки СДН32-20-49-20 справочные данные последнего снесем в табл.19.
Таблица 19. Справочные данные СДН32-20-49-20
SН, кВА |
РН, кВт |
UН, кВ |
h, % |
jпот, т×м2 |
n, об/мин |
cosj |
||||
540 |
500 |
6 |
94,3 |
5,5 |
0,9 |
2,1 |
1,1 |
1,038 |
315 |
0,91 |
1. Электромеханическая постоянная времени механизма и двигателя определяется:
где n0 – синхронное число оборотов в минуту.
РН – номинальная мощность двигателя, кВт.
с
Выбор определяется по формуле
где tН – время нарушения электроснабжения, с.
mС – момент сопротивления механизма.
Цех питается от трансформатора ППЭ.
За базисную мощность принимаем мощность двигателя. Индуктивное сопротивление источника питания:
Расчетная пусковая мощность, индуктивное сопротивление двигателя и напряжения при самозапуске в начале самозапуска К' = 6.
кВА
При скольжении 0,1; К' = 3
кВА
Выходной момент при глухом подключении:
где DМ = 0,3 определено по номограмме [3].
Входной момент при глухом подключении недостаточен для обеспечения самозапуска. Проверим достаточность момента при разрядном сопротивлении. Критическое скольжение:
Так как это условие выполняется, двигатель дойдет до критического скольжения
Избыточный момент:
В начале самозапуска
При скольжении 0,05:
Время самозапуска
с
Дополнительный нагрев.
оС
Из расчета следует, что самозапуск возможен как по условию необходимого избыточного момента, так и по условию допустимого дополнительного нагрева.
13. Расчет релейной защиты
Распределительные сети 6-220 кВ промышленных предприятий обычно имеют простую конфигурацию и выполняются, как правило, радиальными и магистральными. Силовые трансформаторы подстанций на стороне низшего напряжения обычно работают раздельно. Поэтому промышленные электросети и электроустановки для своей защиты от повреждения и аномальных режимов в большинстве случаев не требуют сложных устройств релейной защиты. В месте с тем, особенности технологических процессов и связанные с ними условия работы и электрические режимы электроприемников и распределительных сетей могут предъявлять повышенные требования к быстродействию, чувствительности и селективности устройств релейной защиты, к их взаимодействию с сетевой автоматикой: автоматическим выключением резервного питания (АВР, автоматическим повторным включением (АПВ), автоматической частотной разгрузкой (АЧР).
Исходными данными определено произвести расчет релейной защиты трансформаторов ПГВ. Согласно [3] для трансформаторов, устанавливаемых в сетях напряжением 6 кВ и выше, должны предусматриваться устройства релейной защиты от многофазных КЗ в обмотках и на выводах, однофазных КЗ в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью, витковых замыканий в обмотках, токов в обмотках при внешних КЗ и перегрузках, понижений уровня масла в маслонаполненных трансформаторах и маслонаполненных вводах трансформаторов.
13.1 Защита от повреждений внутри кожуха и от понижений уровня масла
Тип защиты – газовая, реагирующая на образование газов, сопровождающих повреждение внутри кожуха трансформатора, в отсеке переключения отпаек устройства регулирования коэффициента трансформации (в отсеке РПН), а также действующая при чрезмерном понижении уровня масла. В качестве реле защиты в основном используется газовые реле. При наличии двух контактов газового реле защита действует в зависимости от интенсивности газообразования на сигнал или на отключение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21