Проверять будем кабели, отходящие от ПГВ, так как для остальных КЛЭП не известны токи КЗ.
Проверка проводится по условию:
где с = 0,92 – термический коэффициент для кабелей с алюминиевыми однопроволочными жилами и бумажной изоляцией согласно [7], А×с2/мм2;
tотк – время отключения КЗ, с;
tа – постоянная времени апериодической составляющей тока КЗ, с;
F – сечение КЛЭП, мм2.
Рассмотрим расчет на примере КЛЭП ПГВ-ТП1
кА
Увеличим сечение до 95 мм2, тогда
кА > IКЗ = 9,213 кА,
что допустимо
Результаты проверки кабелей на термическую стойкость сведем в табл.18.
Таблица 18. Результаты проверки КЛЭП на термическую стойкость
| 
   Наименование КЛЭП  | 
  
   F, мм2  | 
  
   Iтер, кА  | 
  
   IКЗ, кА  | 
 
| 
   ПГВ-ТП1  | 
  
   70  | 
  
   7,2  | 
  
   9,213  | 
 
| 
   ПГВ-ТП2  | 
  
   35  | 
  
   3,6  | 
  
   9,213  | 
 
| 
   ПГВ-ТП3  | 
  
   35  | 
  
   3,6  | 
  
   9,213  | 
 
| 
   ПГВ-ТП4  | 
  
   35  | 
  
   3,6  | 
  
   9,213  | 
 
| 
   ПГВ-ТП5  | 
  
   35  | 
  
   3,6  | 
  
   9,213  | 
 
| 
   ПГВ-ТП6  | 
  
   16  | 
  
   1,6  | 
  
   9,213  | 
 
| 
   ПГВ-ТП7  | 
  
   70  | 
  
   7,2  | 
  
   9,213  | 
 
| 
   ПГВ-ТП8  | 
  
   50  | 
  
   5,14  | 
  
   9,213  | 
 
| 
   ПГВ-ТП10  | 
  
   70  | 
  
   7,2  | 
  
   9,213  | 
 
| 
   ПГВ-ТП11  | 
  
   50  | 
  
   5,14  | 
  
   9,213  | 
 
| 
   ПГВ-ТП12  | 
  
   25  | 
  
   2,57  | 
  
   9,213  | 
 
| 
   ПГВ-ТП13  | 
  
   95  | 
  
   9,77  | 
  
   9,213  | 
 
| 
   ПГВ-РП  | 
  
   240  | 
  
   24,69  | 
  
   9,213  | 
 
| 
   РП-ТП9  | 
  
   50  | 
  
   5,14  | 
  
   9,213  | 
 
| 
   РП-ТП14  | 
  
   70  | 
  
   7,2  | 
  
   9,213  | 
 
| 
   РП-ТП15  | 
  
   10  | 
  
   1,3  | 
  
   9,213  | 
 
По режиму КЗ при напряжении выше 1 кВ не проверяются:
1. Проводники защищенные плавкими предохранителями не зависимо от их номинального тока и типа.
2. Проводники в цепях к индивидуальным электроприемникам, в том числе цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:
– в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;
– повреждение проводника при КЗ не может вызвать взрыва или пожара;
– возможна замена проводника без значительных затруднений.
3. Проводники к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются не ответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.
В остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.
Так как в нашем случае выполняются все выше изложенный условия в пунктах 1, 2 и 3 то сечение проводников увеличивать не будем.
Для проводников напряжением до 1 кВ приведенных в табл. 19 сечение увеличиваем до 95 мм2.
12. Расчет самозапуска электродвигателей
Самозапуск заключается в том, что при восстановлении электроснабжения после кратковременного нарушения электродвигатели восстанавливают свой нормальный режим работы. Отличительные особенности самозапуска по сравнению с обычным пуском:
– Одновременно пускается группа двигателей;
– В момент восстановления электроснабжения и начала самозапуска часть, или все электродвигатели вращаются с некоторой скоростью;
– Самозапуск обычно происходит под нагрузкой.
При кратковременном нарушении электроснабжения самозапуск допустим как для самих механизмов так и для электродвигателей.
Если невозможно обеспечить самозапуск двигателей, то в первую очередь необходимо обеспечить самозапуск для ответственных механизмов, отключение которых необходимо.
Расчет самозапуска синхронных двигателей:
В цехе № 15 установлены 6х500 СД. Из справочника выбираем двигатель марки СДН32-20-49-20 справочные данные последнего снесем в табл.19.
Таблица 19. Справочные данные СДН32-20-49-20
| 
   SН, кВА  | 
  
   РН, кВт  | 
  
   UН, кВ  | 
  
   h, %  | 
  
   jпот, т×м2  | 
  
   n, об/мин  | 
  
   cosj  | 
 ||||
| 
   540  | 
  
   500  | 
  
   6  | 
  
   94,3  | 
  
   5,5  | 
  
   0,9  | 
  
   2,1  | 
  
   1,1  | 
  
   1,038  | 
  
   315  | 
  
   0,91  | 
 
1. Электромеханическая постоянная времени механизма и двигателя определяется:
где n0 – синхронное число оборотов в минуту.
РН – номинальная мощность двигателя, кВт.
с
Выбор определяется по формуле
где tН – время нарушения электроснабжения, с.
mС – момент сопротивления механизма.
Цех питается от трансформатора ППЭ.
За базисную мощность принимаем мощность двигателя. Индуктивное сопротивление источника питания:
Расчетная пусковая мощность, индуктивное сопротивление двигателя и напряжения при самозапуске в начале самозапуска К' = 6.
кВА
При скольжении 0,1; К' = 3
кВА
Выходной момент при глухом подключении:
где DМ = 0,3 определено по номограмме [3].
Входной момент при глухом подключении недостаточен для обеспечения самозапуска. Проверим достаточность момента при разрядном сопротивлении. Критическое скольжение:
Так как это условие выполняется, двигатель дойдет до критического скольжения
Избыточный момент:
В начале самозапуска
При скольжении 0,05:
Время самозапуска
с
Дополнительный нагрев.
оС
Из расчета следует, что самозапуск возможен как по условию необходимого избыточного момента, так и по условию допустимого дополнительного нагрева.
13. Расчет релейной защиты
Распределительные сети 6-220 кВ промышленных предприятий обычно имеют простую конфигурацию и выполняются, как правило, радиальными и магистральными. Силовые трансформаторы подстанций на стороне низшего напряжения обычно работают раздельно. Поэтому промышленные электросети и электроустановки для своей защиты от повреждения и аномальных режимов в большинстве случаев не требуют сложных устройств релейной защиты. В месте с тем, особенности технологических процессов и связанные с ними условия работы и электрические режимы электроприемников и распределительных сетей могут предъявлять повышенные требования к быстродействию, чувствительности и селективности устройств релейной защиты, к их взаимодействию с сетевой автоматикой: автоматическим выключением резервного питания (АВР, автоматическим повторным включением (АПВ), автоматической частотной разгрузкой (АЧР).
Исходными данными определено произвести расчет релейной защиты трансформаторов ПГВ. Согласно [3] для трансформаторов, устанавливаемых в сетях напряжением 6 кВ и выше, должны предусматриваться устройства релейной защиты от многофазных КЗ в обмотках и на выводах, однофазных КЗ в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью, витковых замыканий в обмотках, токов в обмотках при внешних КЗ и перегрузках, понижений уровня масла в маслонаполненных трансформаторах и маслонаполненных вводах трансформаторов.
13.1 Защита от повреждений внутри кожуха и от понижений уровня масла
Тип защиты – газовая, реагирующая на образование газов, сопровождающих повреждение внутри кожуха трансформатора, в отсеке переключения отпаек устройства регулирования коэффициента трансформации (в отсеке РПН), а также действующая при чрезмерном понижении уровня масла. В качестве реле защиты в основном используется газовые реле. При наличии двух контактов газового реле защита действует в зависимости от интенсивности газообразования на сигнал или на отключение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21