Qi=Q·RЭ/Ri, (3.6).
Где Q-суммарная мощность, подлежащая распределению;
Ri-сопротивление I-й радиальной линии;
RЭ-эквивалентное сопротивление всех радиальных линий.
Расчётная схема замещения приведена на рис.3.2.1
Рис.3.2.1 Схема замещения распределительной сети.
В результате эквивалентирования получено RЭ ГПП=0.025 Ом.
Таблица 3.3.2.2
Результаты расчета КУ.
№ КТП |
QЭi, квар |
QРi, квар. |
QКУi, квар. |
Тип КУ, 0.4 кВ |
1 |
2 |
3 |
4 |
5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
732.2 998.5 945.2 901.6 432.5 1008.1 768.1 699.6 738.1 98.5 434.7 559.2 579.9 401.1 389.4 302.1 404.7 700.2 508.1 519.6 371.8 876.4 |
953.92 1300 1300 1300 554.8 1300 900.93 900.93 900.93 120.4 549 700 700 438.73 438.73 438.73 438.73 1188 700 700 495.8 1164.8 |
221.72 301.5 354.8 398.4 122.3 291.9 132.83 201.33 162.83 21.9 114.3 140.8 120.1 37.63 49.33 136.63 34.03 487.8 191.9 180.4 124 288.4 |
2xУКБН-100 2хУКБТ-150 2хУКБТ-150 2хУКБТ-200 УКБН-100 2хУКБТ-150 УКБН-100 УКБТ-200 УКБТ-150 -- УКБН-100 УКБТ-150 УКБН-100 -- -- УКБН-100 -- 3хУКБТ-150 2xУКБН-100 2xУКБН-100 УКБН-100 2хУКБТ-150 |
23 24 |
912.1 283.8 |
1164.8 411.8 |
252.7 128 |
УКБН-100+ УКБТ-150 УКБН-100 |
4. Выбор схемы электроснабжения завода и трансформаторов ГПП
4.1 Выбор числа и мощности трансформаторов ГПП
Поскольку на рассматриваемом предприятии преобладают потребители I и II категорий по бесперебойности электроснабжения, поэтому, в соответствии с ПУЭ, для внешнего электроснабжения предусматриваю две линии.
Питающие линии выполнены воздушными, т.к расстояние от завода до ИП значительно и составляет 25 км. При сооружении ГПП предусматриваются два трансформатора связи с энергосистемой.
Выбор мощности трансформаторов ГПП произвожу по расчётной мощности завода с учётом загрузки их в нормальном и аварийном режимах с учётом допустимой перегрузки в последнем режиме. Мощность трансформаторов должна быть такой, чтобы при выходе из работы одного из них второй воспринимал бы на себя всю НГ подстанции с учётом аварийной перегрузки.
Мощность трансформатора находим по формуле:
SТР=SР/1.4, (4.1).
Где 1.4-предельный коэффициент загрузки трансформатора.
РР=32191.31 кВт.
QР=32191.31·0.33=10623.13 квар.
SР=33898.84 кВА.
SТР=24213.5 кВА.
Принимаю к установке два трансформатора ТДН-110/10 мощностью по 25 МВА [5].
Загрузка трансформаторов в нормальном режиме:
КЗ=SР/2·SН. ТР. (4.2).
КЗ=0.678;
В послеаварийном режиме:
КЗ АВ=SР/SН ТР (4.3).
КЗ АВ=1.36.
Принимаем к установке 2xТДН-25, считая возможным в аварийном режиме отключение потребителей третьей категории и частично потребителей второй категории.
4.2 Выбор схемы электрических соединений ГПП
На ГПП трансформируется энергия, получаемая от ИП, с U=110 кВ на U=10 кВ, на котором происходит распределение электроэнергии по подстанциям и питания ЭП на этом напряжении.
В соответствии с [5] на двух трансформаторных подстанциях U=35-220 кВ применяю схему “Два блока с выключателями и неавтоматической перемычкой со стороны линий", поскольку блочные схемы позволяют наиболее рационально и экономично решить схему ЭСПП. На подстанциях 35-220 кВ блочные схемы применяются для питания как непосредственно от районных сетей, так и от узловых подстанций промышленного предприятия. Схема приведена на рис.4.1
Схема ГПП удовлетворяет следующим условиям:
Обеспечивает надёжность электроснабжения потребителей и переток активной мощности по магистральным связям в нормальном и послеаварийном режимах;
Учитывает перспективы развития;
Допускает возможность поэтапного расширения;
Учитывает широкое использование элементов автоматики и ПРА.
Рис.4.1 Схема "Два блока с выключателями и неавтоматической перемычкой со стороны линий".
4.3 Технико-экономическое обоснование выбора напряжения питания
Выбор рационального напряжения питания имеет большое значение, т.к величина напряжения влияет на параметры ЛЭП и выбираемого оборудования подстанции и сетей, а следовательно на размер капитальных вложений, расход цветного металла, на величину потерь электроэнергии и эксплуатационных расходов.
Для питания крупных и особо крупных промышленных предприятий рекомендуется использовать напряжения 110, 220 кВ. Напряжение 35 кВ в основном рекомендуется использовать на средних предприятиях при отсутствии значительного числа электродвигателей на напряжение больше 1000 В, а также для частичного распределения энергии на крупном предприятии, где основное напряжение питания 110-220 кВ.
Для внутреннего распределения энергии в настоящее время, как правило, используют напряжение 10 кВ.
Выбор напряжения питания основывается на технико-экономическом сравнении вариантов.
Рассмотрим два варианта с выявлением капитальных затрат, ежегодных эксплуатационных расходов, расходов цветного металла, приведённых затрат. [6].
Для определения технико-экономических показателей намечаем схему внешнего электроснабжения данного варианта. Аппаратура и оборудование намечаем ориентировочно, исходя из подсчитанной электрической нагрузки промышленного предприятия. Затем определяется стоимость оборудования и другие расходы.
Намечаем два варианта внешнего электроснабжения - 35 и 110 кВ.
В соответствии с намеченным вариантом при заданном напряжении определяем суммарные затраты и эксплуатационные расходы.
Капитальные затраты установленного оборудования линии:
ОРУ 110 кВ с двумя системами шин на ЖБ конструкциях.
К0=2·14.95=29.9 т. руб. [3].
Линия принимается двухцепной, воздушной с алюминиевыми проводами и ЖБ опорами. Экономическое сечение определяю по экономической плотности тока:
IР=SР/√3·U·2, (4.4).
IР=85.19 А.
FЭК=IР/jЭК, (4.5).
FЭК=77.45 мм2.
ТMAX<5000 ч. [2], следовательно j=1.1
Для сталеалюминиевых проводов минимальным сечением по механической прочности является сечение 25 мм2, но по условию коронирования при напряжении 110 кВ следует принять сечение 70 мм2.
Принимаем сечение F=95 мм2, АС-95, r0=0.314 Ом/км, x=42.9 Ом/км.
Стоимость 1 км двухцепной линии указанного сечения на ЖБ опорах 12.535 т. руб. [3]. Тогда при двух линиях и L=25 км соответственно:
КЛ=2·25·12.535=626.75 т. руб.
В соответствии с нагрузкой завода устанавливается два трансформатора
ТДН-110/10 с мощностью 25 МВА. Паспортные данные трансформатора следующие:
UК=10.5%; ΔРХХ=29 кВт; ΔРКЗ=120 кВт; КТ=58.3 т. руб. [7].
КТ=2·58.3=116.6 т. руб.
К∑=29.9+626.75+116.6=773.25 т. руб.
Эксплуатационные расходы.
Потери в линиях
ΔРЛ= ( (SР/2) 2/U2Н) /R·L, (4.6).
ΔРЛ=1191.44 кВт.
Потери в двух линиях:
2·ΔРЛ=2382.88 кВт.
Потери в трансформаторе:
Приведённые потери активной мощности при КЗ:
ΔР1 КЗ=ΔРКЗ+КЭК·QКЗ, (4.7).
Где КЭК=0.06 кВт/квар.
ΔР1 КЗ=120+0.06·0.105·25000=277.5 кВт.
Приведённые потери активной мощности при ХХ:
ΔР1 ХХ= ΔРХХ+КЭК·QХХ, (4.8).
ΔР1 ХХ=29=0.06·0.0075·25000=40.25 кВт.
Полные потери в трансформаторах:
ΔРТ=2· (40.25+277.5·0.6782) =350.89 кВт.
Полные потери в линии и трансформаторах:
ΔРΣ=ΔРЛ+ΔРТ, (4.9), ΔРΣ=2382.88+350.89=2733.77 кВт.
Стоимость потерь:
СП=С0·ΔРΣ·ТMAX, (4.10).
Где С0=0.8 (коп/кВт·ч) - стоимость 1 кВт·ч электроэнергии.
СП=0.8·2733.77·5000=10.94 т. руб.
Средняя стоимость амортизационных отчислений.
Амортизационные отчисления по линиям принимаются 6% от стоимости линий, по подстанциям-10%. [7].
СА Л=37.605 т. руб.
СА ПС=14.65 т. руб.
СΣ Л, ПС=52.255 т. руб.
Суммарные годовые эксплуатационные расходы.
СΣ=СП+ СΣ Л, ПС=10.94+52.255=63.195 т. руб.
Суммарные затраты:
З=СΣ+0.125·КΣ=63.195+0.125·773.25=159.85 т. руб.,
Где 0.125-нормативный коэффициент эффективности капиталовложений ед/год.
Потери электроэнергии:
ΔW=ΔРΣ·ТГОД, (4.11).
ΔW=2733.77·5000=13668.85 МВт·ч.
Расход цветного металла:
G=2·L·g, (4.12).
Где g=261 кг/км, [7], - вес 1 км провода.
G=2·25·261=13.05 т.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16