Энтропия. Теория информации

G =

Hr


(3.23)

D IS

где G коэффициент стохастичности (вариабельности, гибкости) внутренних связей.

Оптимальным соотношением жесткости и гибкости внутренних связей Gopt оказывается такое соотношение, которое соответствует степени вариабельности условий внешней среды.

Результаты исследований статистических свойств письменных текстов дали близкие результаты для всех европейских языков:

G @ ¼

Очевидно, эта величина G является для языка оптимальной, так как она характеризует соотношение, возникшее в результате эволюционного развития языка. Будучи величиной статистической, она может варьироваться в зависимости от характера текста: для служебных бумаг и инструкций G < Gopt, для поэтических текстов G > Gopt.

Чем больше величина G, тем менее избыточным будет текст. Избыточность текста характеризуется коэффициентом избыточности R, определяемым как:

R =

Hmax - Hr

=

D IS


(3.24)

Hmax

Hmax


Сопоставляя (3.23) и (3.24). можно выразить величину G через R как:

G =

1 – R



(3.25)

R

ИНФОРМАЦИЯ И ЭНЕРГИЯ

Для выявления взаимосвязи структурной информации с внут­ренней энергией систем воспользуемся уравнением Гельмгольца:

U=F+ST                                                   (4.1)

где: U - внутренняя энергия ;

F - свободная часть внутренней энергии ;

ST - связанная (энтропийная ) часть внутренней энергии ;

S - физическая энтропия ;

Т - абсолютная температура.

В состоянии термодинамического равновесия вся внутренняя энергия становится «энтропийной», а сама энтропия достигает мак­симальной величины[3].

Таким образом , при достижении равновесия достигается условие:     

F=0                                                           (4.2)

из которого, согласно (4.1) следует:

U = Smax T                                                     (4.3)

или:                     

Smax =

U



(4.4)

T

Преобразуем выражение (4.1), поделив левую и правую части уравнения на Т:

U

=

F

+ S

(4.5)

T

T

Подставляя (4.4) в (4.5) и перенося член S в левую часть с противоположным знаком, получаем :

Smax – S=

F



(4.6)

T

Для дальнейшего рассмотрения к входящему в выражение члену S добавим индекс r, имея в виду, что Sr – это та реальная энтропия, внутренняя энергия которой определяется выражением (4.1).

Учитывая, что в соответствии с соотношением (1.4)

S = K H                                                         (4.7)

приведем выражение (4.6) к виду:

F

=

K ( Hmax – Hr )

(4.8)

T

где К  постоянная Больцмана;

Нтах максимальная информационная энтропия ;

Нr  реальная информационная энтропия .

Сопоставляя (4.8) с ранее полученным выражением (2.7) получаем :

F

=

KD IS

(4.8)

T

Полученное соотношение свидетельствует о том, что при неиз­менном значении температуры Т свободная часть внутренней энергии F зависит только от количества сохраняемой системой структурной информации D IS.

Другими словами, свободная энтропия F это часть энергии, которая расходуется на определяющие структурную организацию системы межэлементной связи.

Г.Гельмгольц назвал эту часть внутренней энергии «свободной энергией» имея в виду, что эту энергию, в отличие от составляющей внутренней энергии ST , можно «освободить» для той или иной полезной работы. Такое «освобождение» осуществляется путем разрушения внутренних связей, определяющих структуру исполь­зуемых для этой цели систем: сжигания органических веществ (нефти, угля), разрушения атомов или атомных ядер и т.п.

Введем понятие потенциального коэффициента полезного дей­ствия η, показывающего, какая часть внутренней энергии может быть, в принципе, использована для полезной работы:

η =

F


(4.10)

U

 С учетом (4.4) и (4.9) выражение (4.10) приводится к виду :

η =

DIS


(4.10)

Hmax

Сопоставляя (4.11) с выражением (3.24), приходим к выводу, что потенциальный КПД  η равен коэффици­енту избыточности R.

Рассмотрим два крайних состояния систем, одному из которых соответствуют условия D IS = 0 (состояние равновесия), а другому – D IS = Нmax (жесткая детерминация) .

В соответствии с выражением (4.11) в состоянии равновесия η = 0 (поскольку вся внутренняя энергия в этом случае оказыва­ется не «свободной», а «связанной», т.к. F = 0, a U = Smax T).

При жесткой детерминации (D IS = Нmax) в соответствии с (4.11), η = 1.

Это условие означает, что вся внутренняя энергия расходуется только на сохранение межэлементных структурных связей, поэтому структура такой системы останется неизменной (жестко детермини­рованной ) до тех пор, пока система не разрушится под влиянием изменившихся условий внешней среды.

При неизменных внешних условиях и при η = 1 осуществляется «вечное движение», примером которого может служить жестко детерминированное движение небесных светил и планет.






ЗАКЛЮЧЕНИЕ.

 

 

Подводя итог всему, что было сказано выше, отметим, что по мере того, как рациональная наука все глубже и глубже постигает сложность организации существующих в мире систем она все в большей мере осознает недостаточность ранее признанных редукционистских концепций. Поиски источников информации определяющей структуры и функции сложных систем, приводят науку к необходимости создания телеологических концепций, то есть, в конечном счете, к признанию некого организующего начала, которое и есть не что иное, как проявление воли Творца.

СПИСОК ЛИТЕРАТУРЫ

 

1.     Седов Е., Кузнецов Д. В начале было Слово… СПб., 1994.

2.     Шеннон К.Е. Математическая теория связи. Работы по теории инфор -мации и кибернетике., М, 1963.

3.     Шеннон К. Е. Бандвагон. /Работы по теории информации и кибернети­ке/, М., 1963.

4.     Бриллюэн Л. Научная неопределенность и информация, М.,1966.

5.     Винер Н. Кибернетика, или Управление и связь в животном и машине. М,1968.

6.     Аптер М. Кибернетика и развитие М. 1970.

7.     Седов Е.А. Взаимосвязь информации, энергии и физической энтропии в процессах управления и самоорганизации. Информация и управ­ление. М., Наука, 1986.

8.     Седов Е.А. Эволюция и информация. М., Наука, 1976.

9.     Шеннон К. Е. Предсказание и энтропия английского печатного текста.

10.        Пригожий И., Ствнгврс И. Порядок из хаоса. М.. Прогресс, 1986.

11.        Тейяр де Шарден Феномен человека. М., Наука, 1987.


[1] Зависимость вероятностей последующих событий от предыдущих определяется в теории вероятностей термином «корреляция».

[2] Близкое к указанному сочетание избыточной и непредсказуемой информации было затем получено в результате анализа тестов на русском и ряде европейских языков.

[3] Данное состояние относится к категории теоретических абстракция, поскольку при достижении термодинамического равновесия не разрешается структура элементарных частиц.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать