Фильтрация газов(баротермический эффект)
p>|[pic] |(1.4.102|
| |) |

(предполагается, что ас — b20 всюду в области G). Пусть общий интеграл уравнения (1.4.101) имеет вид
|((х, у)= k , |(1.4.111|
| |) |

а общий интеграл уравнения (1.4.102)
|((х, у)= k. |(1.4.112|
| |) |

Интегральные кривые характеристического уравнения (т. е. все кривые, входящие в семейства (1.4.111) и (1.4.112)) называются характеристиками заданного дифференциального уравнения (1.4.1). В связи с этим рассматриваемый метод упрощения уравнения (1.4.1) называется методом характеристик.

Семейства (1.4.111) и (1.4.112) можно рассматривать, как общие интегралы уравнения (1.4.8) (это уравнение распадается на два уравнения
(1.4.101) и (1.4.102)).

Следовательно, согласно доказанной теореме, функции z=((х, у) и z=((х, у) являются решениями уравнения в частных производных (1.4.6).

Функции ((х, у) и ((х, у) независимы друг от друга (можно доказать, что их якобиан отличен от нуля, если ас- b20 из (3.2.2)-(3.2.3) следует известное решение для несжимаемой жидкости[4]:
|[pic] |(3.2.4)|


Аналогично в стационарном случае из (2.2.14) получим:
|[pic] |(3.2.5)|


В пределе при ?>0 из (3.2.5) и (3.2.3) следует известное решение для несжимаемой жидкости[4]:
|[pic] |(3.2.6)|

Выражения (3.2.2), (3.2.4) решают поставленную задачу о баротермическом эффекте при фильтрации газа в прискважинной зоне реальных газовых пластов. Такое решение поставленной задачи получено впервые.
Поэтому представляет значительный и практический интерес анализ результатов расчетов на основе полученных решений, что и приведено в четвертой главе.

3.3. Выводы

В данной главе получено аналитическое решение задачи о баротермическом эффекте с учетом барической сжимаемости, которая включает в себя решение гидродинамической задачи для линеаризованного уравнения состояния и температурную задачу в линеаризованном случае.

Глава 4. анализ результатов расчетов и Исследование температурных полей, возникающих при фильтрации газа

В данной главе приведен анализ результатов расчетов баротермического эффекта в прискважинной зоне газовых пластов применительно к реальным месторождениям газа.

4.1. Анализ результатов расчетов температурных полей

На рис. 1. приведены результаты расчетов величины баротермического эффекта от времени при различных барических сжимаемостях. В расчетах принято: ?=-0.5?10-5[pic]; r=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic]; ?=150[pic]; ?=10-7[pic];
P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].

Из рисунка видно, что изменение температуры подчиняется следующим закономерностям. Линейное нарастание температурного эффекта при малых временах сменяется логарифмической стабилизацией - при больших временах.
Время, при котором происходит смена линейного нарастания на логарифмическую стабилизацию, зависит от барической сжимаемости; с увеличением сжимаемости это время уменьшается.

Величина температурного эффекта также сильно зависит от сжимаемости. С увеличением сжимаемости величина температурного эффекта возрастает.
Коэффициент барической сжимаемости приблизительно обратно пропорционален давлению. Реальные значения этого коэффициента в условиях газовых пластов лежат в пределах от 3 10-8 Па-1 до 10-5; поэтому величина эффекта лежит в пределах до –10 ( –15 К.. Это хорошо согласуется с величиной измеряемых в скважинных условиях температурных эффектов.
|[pic] |Рис.1. Зависимость величины |
| |баротермического эффекта от |
| |времени при различных |
| |барических сжимаемостях. |
| |Обозначения: 1 - ( = 3 10-4 |
| |Па-1, 2 – 10-5, 3 – 10-6, 4 – |
| |10-7, 5 – 5 10-8 |

Важно отметить, что согласно разработанной нами теории время установления температурного эффекта при ( ( 10-8 Па-1, что часто встречается на практике, составляет около суток. Этот факт чрезвычайно важен при практическом использовании баротермического эффекта.

На рис. 2 показана зависимость баротермического эффекта от времени при различных относительных вязкостях. Из рисунка видно, что величина температурного эффекта возрастает со временем тем больше, чем меньше относительная вязкость. В расчетах принято: ?=-0.5?10-5[pic]; r=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic];
?=150[pic]; ?=10-7[pic]; P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic];
PW=150?105[pic].
|[pic] |Рис 2. Зависимость |
| |нестационарной |
| |температуры от времени |
| |при различных |
| |относительных вязкостях.|
| |Обозначения: 1- µ = |
| |10-5; 2 -2?10-5 ; 3 – |
| |3?10-5; 4 -4?10-5 |

На рис. 3. показана зависимость баротермического эффекта от времени при различных относительных проницаемостях. Из рисунка видно, что величина температурного эффекта возрастает со временем тем больше, чем больше относительная проницаемость. В расчетах принято: ?=-0.5?10-5[pic]; r=0.1[pic]; с=850[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic];
?=150[pic]; ?= 10-7[pic]; P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic];
PW=150?105[pic].
|[pic] |Рис 3. Зависимость |
| |нестационарной температуры от |
| |времени при различных |
| |относительных |
| |проницаемостях.Обозначения:1- |
| |k = 10-15 м2; 2 -2?10-15 ; 3 –|
| |3?10-15; 4 -4?10-15 |

На рис. 4 показана зависимость баротермического эффекта от времени на различных расстояниях от оси скважины. Из рисунка видно, что величина температурного эффекта возрастает со временем тем больше, чем меньше радиус скважины. В расчетах принято: ?=-0.5?10-5[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic]; ?=150[pic]; ?=10-7[pic];
P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].
|[pic] |Рис 4. Зависимость |
| |нестационарной |
| |температуры от времени|
| |при различных радиусах|
| |скважины. Обозначения:|
| |1- r =0.1 м; 2 -0.2 ; |
| |3 – 0.3; 4 -0.5. |

На рис. 5. показана зависимость баротермического эффекта от радиуса скважины при различных временах. Из рисунка видно, что величина температурного эффекта убывает со временем. Чем меньше радиус скважины, тем больше величина температурного эффекта, при увеличении радиуса скважины температурный эффект уменьшается и стабилизируется. В расчетах принято: ?=-
0.5?10-5[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic];
R=100[pic]; ?=150[pic]; ?=10-7[pic]; P=100?105[pic]; P0=150?105[pic];
PC=200?105[pic]; PW=150?105[pic].

|[pic] |Рис 5. Зависимость |
| |нестационарной |
| |температуры от радиуса|
| |скважины при различных|
| |временах. Обозначения:|
| |1- t =10 000 с; 2 |
| |-100 000 ; 3 – |
| |1 000 000. |

На рис. 6. показана зависимость баротермического эффекта от времени при различных радиусах контура питания. Из рисунка видно, что величина температурного эффекта убывает при увеличении радиуса контура питания. В расчетах принято: ?=-0.5?10-5[pic]; rW=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; ?=150[pic]; ?=10-7[pic]; P=100?105[pic];
P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].

На рис. 7. показана зависимость баротермического эффекта от теплоёмкости при различных временах. В расчетах принято: ?=-0.5?10-5[pic]; rW=0.1[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic];
?=150[pic]; ?=10-7[pic]; P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic];
PW=150?105[pic].

Из рисунка видно, что величина температурного эффекта возрастает при увеличении теплоемкости.

|[pic] |Рис 6. Зависимость |
| |нестационарной |
| |температуры от времени |
| |при различных радиусах |
| |контура питания. |
| |Обозначения: 1- R =25 м; |
| |2 -50; 3 – 100; 4 -200; 5|
| |- 250. |

|[pic] |Рис 7. Зависимость |
| |нестационарной |
| |температуры от |
| |теплоёмкости при |
| |различных временах. |
| |Обозначения: 1- t |
| |=100 000 c; 2 -1 000 000;|
| |3 – 10 000 000. |

На рис. 8. показана зависимость баротермического эффекта от относительной вязкости при различных временах. Из рисунка видно, что величина температурного эффекта возрастает при уменьшении относительной вязкости. В расчетах принято: ?=-0.5?10-5[pic]; rW=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; R=100[pic]; ?=150[pic]; ?=10-7[pic];
P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].
|[pic] |Рис 8. Зависимость |
| |нестационарной |
| |температуры от |
| |относительной |
| |вязкости при |
| |различных временах. |
| |Обозначения: 1- t |
| |=100 000 c; 2 |
| |-1 000 000; 3 – |
| |1 500 000. |

На рис. 9. показана зависимость баротермического эффекта от времени при различных коэффициентах барической сжимаемости. Из рисунка видно,

|[pic] |Рис 9. |
| |Зависимость |
| |нестационарной |
| |температуры от |
| |времени при |
| |различных |
| |коэффициентах |
| |барической |
| |сжимаемости. |
| |Обозначения: 1- ? |
| |=0,0003 Па-1; 2 |
| |-0,00001; 3 |
| |-0,000001; 4 |
| |-0,0000001;5 – |
| |0,0000005. |

что при уменьшении барической сжимаемости величина температурного эффекта уменьшается. В расчетах принято: ?=-0.5?10-5[pic]; rW=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic]; ?=150[pic];
P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].

4.2. Изучение вклада сжимаемости в величину баротермического эффекта

На рис. 10 показана зависимость баротермического эффекта от коэффициента барической сжимаемости при различных временах для малого диапазона температур. Из рисунка видно, что при малых временах зависимость близка к линейной. При больших временах наблюдается небольшой спад температуры. В расчетах принято:?=-0.5?10-5[pic]; rW=0.1[pic]; с=850[pic]; k=10-15[pic]; сPL=84000000[pic]; µ=10-5 [pic]; R=100[pic]; ?=150[pic]; ?=10-
7[pic]; P=100?105[pic]; P0=150?105[pic]; PC=200?105[pic]; PW=150?105[pic].

|[pic] |Рис. 10. |
| |Зависимость |
| |нестационарной |
| |температуры от |
| |коэффициента |
| |барической |
| |сжимаемости при |
| |различных |
| |временах. |
| |Обозначения: 1- t |
| |= 100 c; 2 -1000 ;|
| |3 – 10 000; 4 |
| |-100 000. |

На рис. 11. показана зависимость стационарной температуры от коэффициента барической сжимаемости. Из рисунка видно что величина температурного эффекта в стационарном случае не зависит от коэффициента барической сжимаемости. В расчетах принято: ?=-0.5?10-5; rW=0.1; с=850; k=10-15; сPL=84000000; µ=10-5; R=100; ?=150; P=100?105; P0=150?105;
PC=200?105; PW=150?105.
|[pic] |Рис. 11 Зависимость стационарной|
| |температуры от коэффициента |
| |барической сжимаемости. |

На рис. 12. приведена зависимость времени установления температуры от коэффициента барической сжимаемости.
|[pic] |Рис 12. Зависимость времени |
| |установления температуры от |
| |коэффициента барической |
| |сжимаемости. |

Итак, изучение вклада сжимаемости в величину баротермического эффекта показывает, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.

4. 3. Выводы

В данной главе сделан анализ результатов расчетов и исследованы температурные поля, возникающих при фильтрации газа. Показано, что величина температурного эффекта составляет около 20 К. Время установления температурного эффекта сильно зависит от проницаемости и для реальных значений проницаемости составляет приблизительно сутки. Это важно учитывать при интерпритации результатов термических исследований скважин.

Изучен вклад сжимаемости в величину баротермического эффекта.
Показано, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.

Показано, что время установления баротермического эффекта зависит от барической сжимаемости и лежит в пределах до 109 с при ?~10-8 Па-1. При
?~10-8 Па-1 время полного установления составляет (приблизительно) три года. Значит температурные поля в газовом пласте практически всегда нестационарны.

Заключение

В ходе проделанной работы были получены следующие результаты:
1. Описаны основные уравнения состояния реального газа, уравнения, описывающие процесс фильтрации газа в пористой среде.
2. Представлено аналитическое решение задачи о баротермическом эффекте с учетом реального уравнения состояния.
3. Получено аналитическое решение задачи о баротермическом эффекте с учетом барической сжимаемости.
4. Сделан анализ результатов расчетов и исследование температурных полей, возникающих при фильтрации газа.
5. Исследованы температурные поля и изучен вклад сжимаемости в величину баротермического эффекта. Показано, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.
6. При ?~10-8 Па-1 время полного установления температуры составляет

(приблизительно) три года. Это означает, что температурные поля в газовом пласте практически всегда нестационарные. Следует отметить при этом что логарифмическая стабилизация достигается при времени около суток.

Список использованной литературы

1. Ландау Л. Д., Лившиц Е. М. Статистическая физика// М.,1964.

2. Карслоу Г., Егер Д. Теплопроводность твердых тел// М: Наука. 1964.

487с.

3. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей// М., Наука. 1972.

4. Филиппов А. И., Фридман А. А., Девяткин Е. М. Баротермический эффект при фильтрации газированной жидкости: Монография. - Стерлитамак:

Стерлитамак. гос. пед. ин-т; Стерлитамакский филиал Академии наук

Республики Башкортостан, 2000. – 175с.

5. Филиппов А. И. Скважинная термометрия переходных процессов. - Саратов:

Изд-во Сарат. ун-та, 1989. – 116с.

6. Очан Ю. С. Методы математической физики// М: Высшая школа. 1965. 383с.

7. Яворский Б. М., Детлаф А. А. Справочник по физике. – М.: Наука, 1971.

– 940с.

8. Морачевский А. Г., Сладков И. Б. Физико – химические свойства молекулярных неорганических соединений. – С. Пб.: Химия, 1996. – 312с.

9. Баскаков А. П., Гуревич М. И., Решетин Н. И. и др. Общая теплотехника.

– М.-Л.: Государственное энергетическое издательство, 1963. – 392с.

-----------------------
-25.1

5?10-4

?

-24.9

-25.0

?T,K

4

3

1

2

10-3

8?10-4

6?10-4

1

2

3

4?10-4

2?10-4

8?104

6?104

4

4?104

2?104

-20

-16

-12

-8

-4

t,c

0

0

1?105

5

?T,K

0

-20

-15

-10

-5

?

?T,K

0

t,c

?T,K

7?105

.

-4

-3

-2

-1

0

-5

-6

0

-7

4

1

2

3

1?105

5?105

6?105

2?105

3?105

4?105

0

0

?T,K

1

2

3

4

t,c

-2

-10

-8

-6

-4

2?105

4?105

6?105

8?105

1?106

0

?T, K

t

-4

-2

4

3

2

1

-6

0

-8

5?105

1?106

0

r

1

2

3

-5

-10

-15

-20

0

?T, K

0.5

1

1.5

0

?T, K

-2

-4

-6

-8

-10

1

3

2

5?105

0

5

4

1?106

t, c

0

-5

3

2

1

с

1000

500

0

-10

?T, K

0

-5

3

2

1

-10

-15

-20

-25

0

2?10-6

4?10-6

6?10-6

8?10-6

1?10-7

?T, K

µ

t, c

-15

1

0

-30

-25

-20

2

3

4

5

1·1010

2·1010

3·1010

4·1010

?T, K

?, с

6?108

4?108

2?108

1?10-3

1?10-8

5?10-4

?

0



Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать