Физические основы теории нетеплового действия электродинамических полей в материальных средах

В применении к проводнику с током соотношение rot представим в интегральной форме:

,                                     (14)

где циркуляция поля вектора электрического потенциала  по замкнутому контуру С равна потоку поля вектора электрического смещения  через поверхность SC , опирающуюся на этот контур. Согласно закону сохранения электрического заряда, этот поток через замкнутую  поверхность () для постоянного тока равен нулю.

На основе (14) можно получить конкретные формулы связи поля вектора  с полями векторов  и , однородно распределенными внутри цилиндрического проводника радиуса R и ориентированными вдоль его оси симметрии:                   

      при  r < R,                           (15)

      при r >R.                         

Таким образом, поле электрического вектор-потенциала  существует как в самом проводнике с током, так и вовне, оно непрерывно на его поверхности, при этом вектор  всегда ортогонален плоскости, в которой лежат вектора  и . Здесь интересно и физически перспективно представлять себе проводник с током в виде “электрического соленоида”, поскольку структуры полей электрической индукции  и вектор-потенциала  топологически тождественны аналогичным структурам полей магнитной индукции  и вектор-потенциала  магнитного соленоида [12].

Однако представления о вектор-потенциале  будут физически содержательны по-настоящему только тогда, когда указан, хотя бы в принципе, метод его наблюдения, а лучше - конкретный способ измерения параметров этого векторного поля. В рассматриваемом случае это возможно ввиду математической тождественности соотношений rot и rot, связанных выражением . А потому в асимптотике частот  “силовые” линии поля электрического вектор-потенциала  проводника с током топологически полностью соответствуют распределению напряженности магнитного поля , созданного этим током в процессе электропроводности, а величины этих полей во всех точках пространства прямо пропорциональны между собой:

.

Согласно [14], порядок величины постоянной времени релаксации электрического заряда в металлах 10-6 с, а конкретно для меди из эксперимента [16] - 3,6·10-6 с. Поскольку измерение характеристик магнитного поля не представляет серьезной технической проблемы, следовательно, поле электрического векторного потенциала  проводника с током является реально измеряемой физической величиной.

Для иллюстрации реальности и физической значимости поля электрического вектор-потенциала  введем, аналогично вектору плотности потока ЭМ энергии Пойнтинга , потоковый вектор , который для цилиндрического проводника с током запишется в конкретном виде:           

.                            (15)                     

Здесь  – объемная плотность электрической энергии. Следовательно, этот вектор определяет электрическую энергию, приходящуюся на единицу площади поверхности проводника. При этом из уравнений системы (5) имеем для процессов электростатики модификацию уравнений электрического поля с компонентами напряженности и векторного потенциала:                

 (a)  rot,    (b)  div,    (c)  rot,    (d)  div.    (17)                       

Видно, что поток чисто электрической энергии в пространстве действительно существует, и он осуществляется, как и должно быть, двумя компонентами электрического поля посредством потокового вектора . При этом энергетика процесса электрической поляризации проводника под действием электрического тока запишется соотношением баланса:                                

-div.                                (18)

Для процессов магнитостатики постоянного тока из уравнений системы (6) с учетом (3с) получаем систему уравнений магнитного поля с соответствующими компонентами напряженности и векторного потенциала:

 (a)  rot,    (b)  div,    (c)  rot,    (d)  div.   (19)            

Здесь перенос чисто магнитной энергии в пространстве осуществляется двумя компонентами магнитного поля в виде потокового вектора , и энергетика процесса магнитной поляризации проводника под действием электрического тока определится уравнением баланса:                               

- div.                                (20)

Соответственно, уравнения системы (4) модифицируются в систему  уравнений статического поля ЭМ векторного потенциала с электрической и магнитной компонентами:                 

(a)  rot,   (b)  div,   (c)  rot ,   (d) div.                                                                        (21)      

Отсюда следует соотношение баланса, описывающее передачу проводнику момента ЭМ импульса посредством потокового вектора :

- div.                                    (22)

Кстати, из уравнений системы (19) получим конкретные формулы для компонент магнитного поля цилиндрического проводника с постоянным электрическим током при r  ≤  R

    и    ,

а, следовательно, явный вид аналитических выражений поля потоковых векторов внутри и на поверхности проводника

     и     .           (23)       

Таким образом, процесс электрической проводимости имеет полевое континуальное воплощение, что является принципиальным дополнением и расширением узких рамок формализма локальных механистических представлений о данном явлении. Как следствие это позволило “увидеть” потоки электрической и магнитной энергии, момента ЭМ импульса, которые наряду с энергетическим потоком компенсации джоулевых потерь реализуют процесс стационарной электропроводности в нормальном (несверхпроводящем) металле.

Заключение.


Как видим, в отношении полноты охвата явлений электромагнетизма системы электродинамических уравнений (4 - 6) вместе с системой уравнений Максвелла (1) (для статических процессов – это системы (17), (19), (21) и (12)) составляют необходимое и равноправное единство, в котором каждая из систем вполне автономна и описывает строго определенные явления. Отличительная особенность уравнений предлагаемых систем в сравнении с традиционной системой уравнений ЭМ поля состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать реальные электродинамические процессы нетепловой природы: электрическую и магнитную поляризацию среды, передачу ей момента ЭМ импульса.

В общем виде и на конкретном примере аргументированно доказано, что в классической электродинамике, наряду с ЭМ полем с векторными компонентами  и , следует рассматривать и другие реально существующие поля: электрическое поле с компонентами  и , магнитное поле с компонентами  и  и поле ЭМ векторного потенциала с компонентами  и . Наличие у электродинамического поля двух векторных взаимно ортогональных компонент – это объективный способ существования этого поля, принципиальная возможность его распространения в пространстве в виде потока соответствующей физической величины.

Рассмотренные физические аспекты теории поля ЭМ векторного потенциала, в том числе, установление его физического смысла, безусловно являются серьезным прогрессом в развитии основ электромагнетизма,  а  представленные результаты служат введением в новые неисследованные области учения об электричестве в рамках электродинамики сплошной среды и ее приложений. При этом концептуально открываются широкие возможности всесторонних исследований нетеплового действия электродинамических полей в материальных средах, в частности, продолжения на новом уровне изучения влияния этих полей на физико-механические свойства сред, которое уже нашло успешное прикладное применение [3, 4] в технологиях обработки разного рода материалов.


1. Wertheim G.  // Ann.  Phys.  und   Chem. 1848. Bd. 11/11. S. 1-114.

2. Троицкий О.А. // Письма в ЖЭТФ. 1969. Т. 10. С. 18-22.

3. Спицын В.И., Троицкий О.А. Электропластическая деформация металлов. М.: Наука, 1985.

4. Троицкий О.А., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов. В 2-х томах. ”Институт компьютерных исследований”, 2004.

5. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.

6. Сидоренков В.В. // Труды XIX Международной школы-семинара «Новые магнитные материалы микроэлектроники». М.: МГУ, 2004. С. 740-742. // Материалы II Международного семинара «Физико-математическое моделирование систем». Ч. 2. Воронеж: ВГТУ, 2005. С. 35-40. // Труды XX Международной школы-семинара «Новые магнитные материалы микроэлектроники». М.: МГУ, 2006. С. 123-125. // Материалы VII Международной конференции «Действие электромагнитных полей на пластичность и прочность материалов». Воронеж: ВГТУ, 2007. С. 93-104. // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.

7. Дюдкин Д.А., Комаров А.А. Электродинамическая индукция. Новая концепция геомагнетизма / Препринт НАНУ, ДонФТИ-01-01, 2001.

8. Сидоренков В.В., Толмачев В.В., Федотова С.В. // Известия РАН. Сер. Физическая. 2001. Т. 65. № 12. C. 1776-1782.

9. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.

10. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.

11. Максвелл Дж. К. Трактат об электричестве и магнетизме. В 2-х томах. М.: Наука, 1989.

12. Антонов Л.И., Миронова Г.А, Лукашёва Е.В., Чистякова Н.И. Векторный магнитный потенциал в курсе общей физики / Препринт № 11. М.: МГУ, 1998.

13. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.

14. Зоммерфельд А. Электродинамика. М.: ИЛ, 1958.

15. Сидоренков В.В. // Радиотехника и электроника. 2003. Т. 48. № 6. C. 746-749.

16. Корнев Ю.В., Сидоренков В.В., Тимченко С.Л. //  Доклады РАН. 2001. Т. 380, №  4. С. 472-475.



Страницы: 1, 2, 3



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать