òr dV=òDdS
v s
_ _ _
6) òdiv DdV=ѓDdS - Остр. Г.
v s
согласован «
В теор. Остр. Гаусса содерж. связь между дивергенцией и потоком одного и того же вектора.
Работа сил. электростатич. поля.
Потенциал поля.
Силы электростатич. поля перемещая электрич. зар. соверш. работу.
Вычислим работу сил электростатич. поля для перемещения зар. по произвольной траектории.
q - созд. поле.
+q0 -перемещ. в поле заряда q.
Рассмотрим перемещение заряда на элементар. кчастке dl.
0) dA=Fldl =Fcos adl =Fdr
r - тек. расст. между q иq0.
Найдем полную работу.
2 2
А=òdA=òFdr
1 1
Поскольку Fdr cosa¢=1
_ _
Fdr=Fdr
r 2_ _
1) A=òFdr
r 1
Воспользуемся для получ. втор. формулы связью между
_ _ _ _ _ _
Е и F. E=F/q0 E=q0E
_ _
2) dA=q0Eldl =q0Edl =
=q0Ecos adl
интегрируем 2) лев. и прав. часть
2 _ _
3) A=q0òEdl
1
Получим еще одну формулу.
Воспольз. 1) в котор. подставим ур. Fкл.
r2
A=òk(q0´q/r2)dr
r1
A=q0((kq/r1) - (kq/r2))
Из 4)
5) A=q0(j1 - j2)
Работа при перемещении зар. q0 электростатич. силами равно произв. вел. этого заряда на разность потенциала в начальной и конечной точке.
Из 4) след. что работа сил поля независ. от формы траектор. Силы электростатич. явл. консервативными , поле электростатическое явл. потенциальным полем.
Используя 5) дадим второе опред. потенциала. Для этого рассм. перемещение полож. заряда q0 из данной т. в котор.
j1 = j в бесконечность j2=j¥=0.
Из 5) А¥=q0j
6) j = А¥/q0
Потенциал. поле в данн. т. числ. =работе соверш. сила электростатич. поле при перемещении единичного полож. заряда из данной т. в бесконечность. Потенц. скаляр. характеристика. Дж/Км=В
Теор. о циркуляции вектора напр.электростатич. поля.
Потенциальный характер поля.
Рассм. перемещ. зар. q0 в поле заряда q вдоль произвольной замкнутой траектор. А = 0.
Возмем для работы форм. 3)
_ _
q0ѓEldl=q0ѓEdl =0
L L
q0 ¹ 0
_
1) ѓEldl=0 - циркуляция Е
L _
Циркул. Е в доль произвольн. формы замкн. контура=0.
Теор. о циркул. свидетельствует о том что электростатич. поле - потенциальное.
Если циркул. не =0 то поле не потенциально.
Физ. смысл. циркул. численно равен работе по перемещ. единичн. полож. зар. по замкн. траектории.
Лекция.
Вычисление разности потенциала по напряж. поля.
2
1)A=q0òEldl
1
2)A=q0(j1 - j2)
2
j1 - j2=òEldl Связь между
1 разностью потенциала и напряженностью поля.
Вычислим разность потенциала для бесконеч. , равномер. заряженной нити с линейной плотностью t .
Пример:
t =dq/dl [ Кл/м]
t1, t2 e=1
(j1 - j2) - ?
El=Er dl=dr
r2 r2
j1 - j2=òErdr=òEdr
r1 r1
E=(t/2pe0r) напряженность поля в точке на расст. r от нити. 2
j1 - j2=(t/2pe0)òdr/r
1
j1 - j2=(t/2pe0)´ln(r2/r1)
Пример 2:
Вычисл. разности потенциала для равномер. заряж. сферы (проводящий шар).
Сфера R , q=1
1) r<R 2) r>R
Для точек вне сферы (r>R) из теор. Гаусса напряженность Е вычисляется Е=1/2pe0=q/r2
Внутри (r<R)
Е=0
r2 r2
j1 - j2=òErdr=òEdr=
r1 r1
=(q/4pe0)òdr/r2=(1/4pe0)(q/r1) -
- (1/4pe0)(q/r2)
из последнего выражения следует что потенц. поля не определ. как и у точечного зар. котор. нах. внутри.
r>R j =(1/4pe0)(q/r)
Внутри напряженность поля =0
поэтому j1 - j2=0
j1=j2=jR=(1/4pe0)(q/R)
j =const
Нарис. графики.
Связь между напряженностью поля и потенциалом в диффер. форме.
Градиент потенциал.
Для получения связи между Е и j в одной точке воспользуемся выраж. для элементарн. работы при перемещении q0 на dl по произвол. траектории.
dA=q0Eldl
В силу потенциального характера сил электростатического поля эта работа соверш. за счет убыли потенциальной энергии.
dA= - q0 dj = - П
Eldl = - dj
3) El= - (dj /dl )
Проэкция вектора напряж. поля на произвольном направлении (l) равна взятой с обратным знаком производной по этому направлению.
4) Ex= - (dj /dx)
Ey= - (dj /dy) Ez= - (dj /dz)
_ _ _
E= - ( i (¶/¶x)+j (¶/¶y)+
_
+k (¶/¶z))´j
_
E= -grad Напряженность
поля в данной т. равна взятому с обр. знаком градиенту потенцеала в этой точке.
Градиент сколяр. фукции явл. вектором.
Градиент показывает быстроту изменения потенцеала и направлен в стор. увелич потенцеала.
Напряж. поля всегда перпендикулярна к эквпотенцеальным линиям.
Пусть точечный заряд q0 перемещается в доль эквипотенцеала j =const , dl - на эквипотенцеали.
dA=q0Eldl dA=0 т.к. Dj =0
El=Ecosa q0Ecosa dl =0
q0¹0 E¹0 dl¹0 cosa=0 a=900
Проводники в электрич. поле.
Электроемкость проводников.
Конденсаторы.
Энергия поля.
§1 Условия равновесия заряда на проводнике. Электростатич. защита.
Внесем в электрич. поле напряженностью E0 тело.
При внесении проводника все электроны окажутся в электростатич поля.
В нутри проводника за короткое время призойдет разделение эл. зарядов (электростатич индукция) с накоплением их на концах.
_ _ _
E0 - внешнее E' ¯E0
_
E' внутри проводника
_ _ _ _ _
Е=E0+E'=0 E'=E0
E - результ. поле в нутри проводника.
В результате рассмотренныых процессов.
Усл. равновес. заряда.
1)Напр. поля во всех точках внутри проводника Е=0 .
2)Поверхность проводника
явл. эквипотенцеальной
j =const.
_
3) Напр. поля Е ^ эквипот.
j =const.
В силу Е=0 проводники люб. формы явл. защитой от электростатич. поля.
Поле у поверхн. заряж. проводника.
Рассм. произаольную форму проводника заряж. по поверх. с поверхностной плотностью s .
Воспольз. теор. Гаусса в интегральной форме.
_ _
ѓDdS=Sqi
s
На заряж. поверхности отсечем круг площадью S.
ѓe0EdS=e0EòdS
s s
e0E´S=s´S
в т. А E=s/e0
D=e0E D=s
Напр. поля прямопропорц. поверх. плотности заряда проводника в окрестностях этой точке.
Разделение зар. по проводнику завис. от его поверх. (у острых углов заряд больше , напряж. сильнее).
Электроемкость проводника.
Единица электроемкости.
Рассм. проводник произв. формы. В близи этого проводника других проводников нет. такой проводник назв. уединенным проводником.
Будем заряжать уединенный проводник. При увеличении заряда потенциал прямо пропорционально зависет от Q.
Связь между зарядом Q , потенциалом j , и формой проводника дает электроемкость С=Q/j .
Емкостью уединенного проводника - назв. физ вел. числ.= величине зар. сообщаемого этому проводнику при увеличении потенциала на 1В.
В Си 1Ф - фарад.
1Ф=1Кл/1В
Электроемкость зависет от размеров , формы и диэлектрической проницаемости среды.
С=4pee0R
j =(1/4pee0)´(Q/R)
Уединенные проводники при приближении к ним других проводников свою емкость существенно меняет (уменьш. за счет взаимного влияния электростотич. полей).
Лекция.
Конденсаторы.
Типы конденсаторов.
Конденсатор - устройство позволяющие получать стабильное значение емкости независящее от окружения.
Создание закрытого поля не влияющего на металлич. предметы достигается за счет двух металлич. разноимен. заряж. электродов.
В зависемости от формы обкладок различают плоские , цилиндрические , сферические конденсаторы.
Расчет емкости конденс. разл. типов.
1)
Дано: s , ½+ s ½=½ - s ½ ,
e , S , d
C - ?
C=q/j уедин. проводника
Для конденс.
1) С= q/Dj =q/U
Dj =U - напряжние
С=sS/Ed=sS/[(s/ee0)´d]=
=ee0S/d 2)
Цилиндрич. конденсатор.
R1 , R2 , l , e
½+q ½=½ - q½
+t , -t
C - ?
Воспользуемся 1)
R2
С= tl/(òEdr) E= t/2pee0r
R1
Напряженность поля произвольной точки располож. между цилиндрами на расст. r от оси определяется только зарядами на внутреннем цилиндре (см. теор. Гаусса). Аналогично для тонкой нити.
R2
С= tl/(ò(t/2pee0r)dr=
R1
= [tl/(t /2pee0´ln R2/R1)]
3) C=[tl/(t /2pee0´ln R2/R1)]
емкость цилиндрич. конденс.
Сферич. конденсатор.
Сферич. конденс. - две концентрические сферы определ. радиуса.
Дано: e , R1 , R2
½+q ½=½ - q½
C - ?
Использ. 1) R2
С=q/= q/Dj =q/(òEdr)=