Физика: механика и термодинамика

2. Отклоните стержень на 5 -6°  и измерьте время 5-10 полных колебаний. Определите период колебаний.

3. Переместите оправу ближе к центру тяжести стержня. Измерьте расстояние l2. Снова измерьте период колебаний стержня.

4. Тем же образом необходимо провести 5-6 опытов, постепенно перемещая опорную призму к середине стержня. Все результаты измерений  занесите в таблицу 2.1. отчета.

4. По результатам опыта вычислите величины l2 и (T2l).

5. Следует построить два графика. Первый график зависимости T=f(l) отображает сложную зависимость периода колебаний физического маятника от его момента инерции и расстояния до оси качания. Второй график – линеаризация той же зависимости. Если точки на втором графике  ложатся на прямую с небольшим разбросом, что объясняется погрешностями измерений, то можно сделать вывод о правильности формулы (13) для периода колебаний физического маятника.


Задание 2. Определение моментов инерции тел  различной формы методом

                   колебаний.

1. Из набора тел к работе возьмите  (по указанию преподавателя) одно и измерьте период его колебаний относительно произвольной оси.

2. С помощью формулы (16) вычислите момент инерции тела относительно оси качаний.

3. Произведите  необходимые геометрические измерения и, зная массу тела, вычислите момент инерции тела относительно центра масс. С помощью теоремы Гюйгенса – Штейнера рассчитайте момент инерции тела относительно оси, проходящей через ось качаний.

 4. Величину моментов инерции, полученных при измерении, сравните с рассчитанными теоретически. Для корректного заключения следует оценить  погрешности измеренного и вычисленного моментов инерции. Относительная погрешность измеренного момента инерции находится по формуле:

                                              (14)

   Относительная погрешность вычисленного момента инерции определяется из расчетной формулы для  заданного вам тела и погрешностей,  входящих в нее величин.

 

Контрольное задание. Определение ускорения свободного падения и длины стержня

  С помощью полученного графика зависимости (T2l) = f(l2),  можно определить ускорение свободного падения и длину стержня, используемого в опыте. Для этого следует определить угловой коэффициент наклона прямой и величину отрезка, отсекаемого прямой от оси OY

                                               (15)

  При вычислении длины стержня используйте экспериментально полученное значение ускорения свободного падения.

  В выводе сравните полученные величины g и d  с их действительными значениями.

Часть III. Крутильный маятник

3.1. Теоретическая часть

   Крутильный маятник представляет собой стержень, шнур или проволоку,  один, (как правило – верхний) конец которой закреплен. К нижнему концу  подвешивается тело произвольной формы. Если повернуть на некоторый угол груз с  проволокой вокруг ее длинной (вертикальной) оси, и отпустить, то в системе возникнут крутильные колебания. Дифференциальное уравнение малых крутильных колебаний в отсутствие трения имеет привычный вид

                                                          (16)

  По аналогии с пружинным маятником, для которого  (k – коэффициент упругости, m – масса, как мера инертности), для крутильного маятника может быть записано , где f – коэффициент упругости кручения подвеса,  J – момент инерции груза.

  Таким образом, если масса проволоки ничтожна в сравнении с грузом, то период гармонических колебаний крутильного маятника зависит от момента инерции подвешенного тела и от упругих свойств материала подвеса:

                                                              (17)

   Между коэффициентом f упругости кручения образца и модулем сдвига G материала этого образца существует  следующее соотношение

            ,                                                           (18)

где d – диаметр цилиндрической проволоки, L – ее длина. 


3.1. Экспериментальная часть

В данной работе крутильный маятник (рис 3) представляет собой шнур или проволоку длиной до 1 м, верхний конец которой закреплен в зажиме, например, прибит к верхней части  проема двери.  На нижнем конце имеется легкая горизонтальная платформа, в которой закрепляется груз. Грузы  имеют правильную геометрическую форму  (стержни) и известную массу, что облегчает расчет их моментов инерции.

 

Задание 1. Определение зависимости периода колебаний

                   крутильного  маятника от момента инерции груза.

1. Штангенциркулем измерьте диаметр проволоки, а линейкой ее длину.

2. Измерьте длину стержня  и, по известной массе, рассчитайте его момент инерции.

3. Укрепите стержень в платформе так, чтобы он располагался горизонтально, а центр его тяжести совпадал с линией подвеса.

4. Сообщите маятнику вращательный импульс так, чтобы он совершал крутильные колебания с небольшой амплитудой.  Измерьте суммарное время   5-10  колебаний маятника. Вычислите период колебаний.

5. Проделайте подобные измерения и расчеты с другими телами  из набора. Результаты занесите в таблицу 3.1 отчета.

6. Постройте  график зависимости  T(J) в координатных осях  [J,T2].

7. По виду графика сделайте вывод о характере зависимости  T(J) для крутильного маятника.

 

Задание 2. Определение модуля сдвига материала методом крутильных колебаний

1. Используя вычисленный ранее момент инерции стержня и период колебаний по формуле  (17)  рассчитайте коэффициент упругости кручения f подвеса.

2. По формуле (18) рассчитайте модуль сдвига G материала проволоки.

3. Замените  проволоку (материал – по указанию преподавателя) и, проделав необходимые измерения, определите коэффициент упругости кручения f  и модуль сдвига  G ее материала.

4. Рассчитайте абсолютную и относительную погрешности измерений величин f и G.

5. Сравните полученные значения модуля сдвига с табличными значениями и сделайте вывод о точности проделанных измерений. В выводе следует также проанализировать, какая из измеряемых величин вносит наибольшую погрешность в результат измерения.


Задание 3. Определение моментов инерции тел методом крутильных колебаний

1. Подвесив исследуемое тело (кольцо с указанной на нем массой) к проволоке и известным коэффициентом упругости кручения,  измерьте период колебаний.

2. По формуле 15 рассчитайте момент инерции исследуемого тела относительно оси, совпадающей с осью проволоки.

3. Рассчитайте момент инерции  кольца по его массе и радиусу относительно этой же оси вращения.

4. Сравните экспериментальный и теоретический результаты.

Контрольные вопросы

1. Дайте определение гармонических колебаний  и приведите примеры.

2. Какие величины характеризуют гармонические колебания?

3. Запишите дифференциальное уравнение свободных гармонических колебаний.

4. Дайте строгое определение математического маятника и опишите закономерности его колебаний.

5. Какие упражнения были выполнены вами с этим маятником?

6. Дайте строгое определение физического маятника и опишите закономерности его колебаний.

7. Какие упражнения были выполнены вами с физическим маятником?

8. Дайте строгое определение крутильного маятника и опишите закономерности его колебаний.

9. Какие упражнения были выполнены вами с крутильным маятником?

10.        Исходя из графика T= f(l) для физического маятника, определите при каком отношении (l/d) период колебаний стержня минимальный.

Отчет о выполнении лабораторной работы № 1

«Изучение колебательного движения»,

          выполненной студент …......  курса, …......  Ф. И. …........

          группа ….                                                                                  «…»…………. 200…г.

Цель работы: ……………………………………………………………………………………

Часть I.  Математический маятник

Задание 1. Проверка влияния массы математического маятника на его период

                   колебаний

Длина маятника l =…м.

Первоначальное отклонение j =…

                                                                                                                        Таблица 1.1.

№ п/п

m, кг

N

t

T

1





2





3





Вывод: …………………………………………………………………………………………….



Задание 2. Изучение зависимости периода  колебаний  математического  маятника

                   от его длины

Первоначальное отклонение j =…

                                                              Таблица 1.2.






         



                 

       График зависимости T2=f(l)


Таблица 1.3.  МНК

Обозначения: l = x ,    T2 = y

№ п/п

xi

yi

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

=

S =

S =

=

S =

S =

S =

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать