Геометрия зрения, иллюзии. Морис Эшер

·                   невозможные фигуры;

·                   перевёрнутые картины;

·                   распознавание образа;

·                   соотношение фигур и фона.


6.                Ма́уриц Корне́лис Э́схер


Творчество его нетривиально, фантастично.


6.1 Биографические сведения


Морис Корнелиус Эшер родился 17 июня 1898 года в Леевардене, административном центре голландской провинции Фрисландия. В доме, котором родился Эшер, сейчас находится музей.

 В школе учился неважно. Оценки по всем предметам у Мориса были плохими за исключением рисования. Учитель рисования художник Самуэль де Мескита, оказавший на молодого человека огромное влияние (Эшер поддерживал дружеские отношения с Мескитой вплоть до 1944 года, когда Мескита, еврей по происхождению, был вместе с семьёй уничтожен нацистами), заметил талант у мальчика и научил его делать гравюры по дереву. Голландский мальчик - Мориц Корнелис Эшер с детства был немного странным. Бесцветный, замкнутый и заикающийся, он плохо учился и был подвержен двум маниям. Первую можно назвать "тягой к падению" - все вертикальные, устремляющиеся ввысь формы, имели для парня пугающую и одновременно восхитительную притягательность. Вторую манию можно назвать построением "безупречного бутерброда". В 1913 году Эшер в школе религии знакомится с парнем, по имени Бас Кист, который станет его лучшим другом. Оба интересовались технологией печати. В 1916 году Эшер выполняет свою первую графическую работу, гравюру на фиолетовом линолеуме - портрет своего отца Г. А. Эшера. С 19 лет Эшер посещает мастерскую художника Герта Стигемана, имевшего печатный станок. На этом станке были отпечатаны первые гравюры Эшера. Его отец, инженер-гидравлик, хотел, чтобы сын получил солидную профессию, и в 1919 году Эшер поступает в Гаарлемское училище архитектуры и декоративного искусства. В 1922 году, проучившись в училище два года, Эшер переезжает в Италию, где проживет 13 лет.

Каждое лето он путешествует по Южной Италии или Испании. Летние впечатления служат материалом для гравюр, над которыми он работает зимой. С 1941 года Эшер постоянно живет в Голландии. Всемирная известность пришла к нему в 1951 году после публикаций сразу в трех популярных журналах: «The Studio», «Time» и «Life». В 1954 году в Амстердаме состоялась большая выставка Эшера, приуроченная к Международному математическому конгрессу. Математики сразу признали художника «своим»; с этого времени его рисунки – неизменный атрибут физико-математических изданий. Среди его восторженных поклонников были и математики, которые видели в его работах оригинальную визуальную интерпретацию некоторых математических законов. Это более интересно тем, что сам Эшер не имел специального математического образования.

Однажды известный геометр Кокстер пригласил Эшера на свою лекцию, посвященную математическому содержанию его гравюр и литографий. К взаимному разочарованию, Эшер не понял почти ни слова из того, о чем рассказывал Кокстер. Вот что писал об этом сам художник: "Я так ни разу и не смог получить хорошей оценки по математике. Забавно, что я неожиданно оказался связанным с этой наукой. Поверьте, в школе я был очень плохим учеником. И вот теперь математики используют мои рисунки для иллюстрации своих книг. Представьте себе, эти ученые люди принимают меня в свою компанию как потерянного и вновь обретенного брата! Они, кажется, не подозревают, что математически я абсолютно безграмотен".

Слава мало изменила образ жизни художника, который продолжал упорно работать. Умер он 27 марта 1972 года.


6.2 Творчество


Одним из самых выдающихся аспектов творчества Эшера является изображение «метаморфоз», фигурирующих в разных формах во множестве работ. Художник подробно исследует постепенность перехода от одной геометрической фигуры к другой, посредством незначительных изменений в очертаниях. Кроме того, Эшер неоднократно рисовал метаморфозы, происходящие с живыми существами (птицы превращаются у него в рыб и проч.) и даже «одушевлял» в ходе метаморфоз неодушевлённые предметы, превращая их в живых существ.

Для сюжетов «классических» произведений Эшера («Рисующие руки», «Метаморфозы», «День и ночь», «Рептилии», «Встреча», «Дом с лестницей» ) характерно остроумное осмысление логических и пластических парадоксов. В сочетании с виртуозной техникой это производит сильнейшее впечатление. Многие графические и концептуальные находки Эшера вошли в число символов XX века и впоследствии неоднократно воспроизводились или «цитировались» другими художниками.

Морис Эшер одним из первых стал изображать в своих мозаичных картинах фракталы. Только спустя десятилетия учёные стали изучать свойста этих фигур и с помощью ЭВМ создавать то, что Эшер рисовал вручную.


6.3 Математическая составляющая в работах Эшера



Все же творчество Эшера интересно математикам не только потому, что в его работах можно обнаружить отголоски конкретных математических результатов. Скорее они вызывают ассоциации с общими математическими идеями. Платон считал, что абстрактные идеи живут отдельно в "мире чистых сущностей" (таковы идеи пространства и времени). В таком, платоновском понимании мир Эшера и мир математики.

Отец Морица однажды обнаружил рисунок своего сына, на котором был изображен... квадратный круг.

В процессе своей работы он черпал идеи из математических статей, в которых рассказывалось о мозаичном разбиении плоскости, проецировании трехмерных фигур на плоскость и неевклидовой геометрии.


6.3.1 Невозможные фигуры



Он был очарован всевозможными парадоксами и в том числе "невозможными фигурами". Парадоксальные идеи Роджера Пенроуза были использованы во многих работах Эшера. Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения плоскости и логика трехмерного пространства. Эшер создал свою невозможную фигуру это квадрат. И использует его в своих картинах для создания большей загадочности и абсурда.


Невозможная лестница была первым невозможным объектом, который использовал Эшер в своём творчестве. В реальности не существует лестницы, по которой можно одниматься, спускаясь, как в его литографии «Восхождение и спуск» . Прямоугольник внутреннего двора замкнут стенами здания, у которого вместо крыши – бесконечная лестница по которой идут на встречу друг другу люди…



Если двигаться по лестнице по часовой стрелке, то мы будем постоянно подниматься, а если будем двигаться против часовой стрелки, то – спускаться.


Секрет здесь кроется в том, что в реальной модели невозможной лестницы должен быть разрыв в районе правого угла (на рисунке), которого в данном случае не видно, так как точка обзора выбрана намеренно, чтобы скрыть этот разрыв.

«Водопад» — литография голландского художника Эшера. Впервые была напечатана в октябре 1961 года. В этой работе Эшера изображен парадокс — падающая вода водопада управляет колесом, которое направляет воду на вершину водопада. Водопад имеет структуру «невозможного треугольника Пенроуза». Конструкция составлена из трёх перекладин, положенных друг на друга под прямым углом. Водопад на литографии работает как вечный двигатель. Но ведь, как известно из школьного курса физики, вечный двигатель невозможен! Как же Эшеру удалось с такими подробностями изобразить то, чего в природе вообще не может быть?! При попытке соорудить двигатель согласно чертежу "обман" всплывает сразу - в трехмерном пространстве такие конструкции геометрически противоречивы и могут существовать только на бумаге, то есть на плоскости, а иллюзия "объема" создается лишь за счет признаков перспективы (в данном случае - умышленно искаженных).

6.3.2 Визуальные парадоксы



Эшер понимал, что геометрия определяет логику пространства, но и логика пространства определяет геометрию. Одна из наиболее часто используемый особенностей логики пространства - игра света и тени на выпуклых и вогнутых объектах. На литографии "Куб с полосками" выступы на лентах являются визуальным ориентиром того, как расположены полоски в пространстве и как они переплетаются с кубом. И если вы верите своим глазам, то вы никогда не поверите тому, что нарисовано на этой картине. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо.


6.3.3 Мозаика


Регулярное разбиение плоскости, называемое "мозаикой" - это набор замкнутых фигур, которыми можно замостить плоскость без пересечений фигур и щелей между ними. Обычно в качестве фигуры для составления мозаики используют простые многоугольники, например, квадраты или прямоугольники. Но Эшер интересовался всеми видами мозаик - регулярными и нерегулярными (прим. перев. нерегулярные мозаики образуют неповторяющиеся узоры) - а также ввел собственный вид, который назвал "метаморфозами", где фигуры изменяются и взаимодействуют друг с другом, а иногда изменяют и саму плоскость.

Интересоваться мозаиками Эшер начал в 1936 году во время путешествия по Испании. Он провел много времени в Альгамбре, зарисовывая арабские мозаики, и впоследствии сказал, что это было для него "богатейшим источником вдохновения".

Математики доказали, что для регулярного разбиения плоскости подходят только три правильных многоугольника: треугольник, квадрат и шестиугольник. (Нерегулярных вариантов разбиения плоскости гораздо больше. В частности в мозаиках иногда используются нерегулярные мозаики, в основу которых положен правильный пятиугольник.) Эшер использовал базовые образцы мозаик, применяя к ним трансформации, которые в геометрии называются симметрией, отражение, смещение и др. Также он исказил базовые фигуры, превратив их в животных, птиц, ящериц и проч. Эти искаженные образцы мозаик имели трех-, четырех- и шестинаправленную симметрию, таким образом сохраняя свойство заполнения плоскости без перекрытий и щелей. В гравюре «РЕПТИЛИИ» маленькие крокодилы играючи вырываются из тюрьмы двухмерного пространства стола, проходят кругом, чтобы снова превратиться в двухмерные фигуры. Мозаику рептилий Эшер использовал во многих своих работах.

Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать