Геометрия зрения, иллюзии. Морис Эшер

6.3.4 Метаморфозы



Во всех работах Эшера используется ассиметричная геометрия. Он один из немногих умел на холсте изобразить «метаморфозы. Эшер рисовал метаморфозы, происходящие с живыми существами (птицы превращаются у него в рыб и прочее) и даже «одушевлял» в ходе метаморфоз неодушевлённые предметы, превращая их в живые существа. Не составляет особого труда заметить два основных объекта первого из них: это существа, обитающие в небе и воде - птица и рыба. При движении по рисунку снизу вверх, накапливаются несущественные, едва различимые отличия у сходных объектов – наращивается количественная определенность. Это приводит к новому объекту, совершенно не похожему на исходный.


6.3.5 Многогранники

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. Во его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


 


Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы.

 Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством.

На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


6.3.6 Самовоспроизведение



Центральная идея самовоспроизведения, взятая на вооружение Эшером, обращается к загадке человеческого сознания и способности человеческого мозга обрабатывать информацию так, как не сможет обработать ни один компьютер. Литографии «Рисующие руки" и "Рыбы и чешуйки" используют эту идею разными способами. Самовоспроизведение является направленным действием. Руки рисуют друг друга, создавая самих себя. При этом сами руки и процесс их самовоспроизведения неразделимы. В работе "Рыбы и чешуйки" концепция самовоспроизведения представлена более функционально, и в данном случае она может быть названа самоподобием. В этом смысле данная работа описывает не только рыб, а все живые организмы, в том числе и человека. Конечно, мы не состоит из уменьшенных копий самих себя, но каждая клетка нашего тела несет в себе информацию обо всем теле в виде ДНК.

Углубляясь в изучение самовоспроизведения, можно его обнаружить в отражении и пересечении отражений реального мира. Такое пересечение встречается во многих картинах Эшера.


Заключение


90% информации приходит в наш мозг через глаза. Зная особенности зрения, человек может анализировать получаемую картинку, понимать, когда глаза его обманывают, а когда изображение полностью реально. Подобные знания могут существенно облегчить жизнь, избавив от неприятностей, связанных со зрительными обманами. Помогут лучше понимать некоторые природные явления, устройства некоторых предметов. Оптические иллюзии сопровождают нас в течение всей жизни. Поэтому знание основных их видов, причин и возможных последствий необходимо каждому человеку.

Анализ объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего окружающего нас мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы, например, представления о том, что мир трехмерен, начинающие работать, как только в картинку вносятся признаки, указывающие на перспективу.

Таким образом, мое исследование показало, сколь широка и многогранна деятельность человека, столь и различны требования, предъявляемые к форме и содержанию изображений. Одни из них должны производить на глаз человека такое же впечатление, какое производит и сам изображаемый предмет, иначе говоря, изображение должно обладать достаточной наглядностью. В другом случае изображение должно быть, в первую очередь, геометрически равноценно оригиналу, оно должно давать полную геометрическую и размерную характеристику изображаемого предмета.

Существует взаимовлияние в развитии геометрии и живописи; зрительные иллюзии существуют и их можно объяснить с помощью геометрии; оптические иллюзии использовались, и будут использоваться человеком в повседневной жизни.

При работе над темой я узнал много интересного о жизни замечательного голландского ученого художника Эшера. В работе я представил произведения художника разных лет и дал подробные описания использованных в них эффектов разбиения плоскости и трехмерного пространства, которые помогут учителям математики, истории, изобразительного искусства, информатики и физики при подготовке к урокам, внеклассным и факультативным занятиям, просто расширят кругозор. Эшера можно назвать художником одиночкой. Его работы трудно отнести к какому-либо художественному направлению. Эшер не много не дожил до компьютерной революции, но своими работами он доказал, что предвидел компьютерную графику.

Литература


1.                 Акбаев А.Н., Физика и живая природа. Ижевск: Удмуртский университет 1999.

2.                  Артамонов И. Д., Иллюзии зрения. М., 1961

3.                 Вадимов А. А., Тривас М.А.. Иллюзии зрения. М.: Наука, 1971.

4.                 Грегори Р.Л. Разумные глаза. М.2003г

5.                 Григорьева Н.Ю. Живая математика. М.2006г

6.                 Демьянов В.П. Геометрия и Марсельеза. М.1986г

7.                 Кагиров Р.Р. Ключи к местоположению визуального познания. Самара,2002г

8.                 Карпунина Н.М. Неожиданная математика. М.2003г

9.                 Луизов А. В.. Цвет и свет. Л.: Энергоатомиздат, 1989.

10.            Перельман Я. И., Занимательная физика. Т.1,2. М.: Наука, 1983.

11.             Розин В.М. Перспектива в геометрии и живописи. М. 1998 г

12.            Франческа П. О живописной перспективе. Энциклопедия 2000г

13.             Четверухин Н.Ф. Начертательная геометрия. М.1963г

14.            Энциклопедия для детей. Художники Возрождения. М.2000 г

15.             http.//mkesher.chaf.ru

16.             http.//www.im-possible.info

17.             http.//ru.wikipedia.org/wiki

18.             . http.//rspu.edu.ru

19.              http.//mkesher.chat.ru

20.             http.//www.exposter.ru

21.              #"_Toc186564269">Приложения

Приложение 4

( Иллюзия итальянского ресторана. Найдите 5 ошибок.)


Страницы: 1, 2, 3, 4



Реклама
В соцсетях
рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать рефераты скачать