Таким образом, Mв = 25´0,0004 = 0,1 Нм.
2.6.2. СТАБИЛИЗАЦИЯ УГЛОВОГО ПОЛОЖЕНИЯ ПРИ КОРРЕКЦИИ
Основное требование, предъявляемое в этом режиме:
- точность поддержания направления импульса коррекции - не хуже 1 угл.мин.
Целью данной главы является исследование динамики системы при стабилизации углового положения при коррекции.
Функциональная схема МКА состоит из следующих эелементов:
1) МКА - малый космический аппарат.
МКА описывается как абсолютно твердое тело.
2) ДУС - датчик угловой скорости.
В качестве ДУС используется командный гироскопический прибор. Он описывается колебательным звеном с параметрами T = 1/30 c-1 и e = 0,7, а также нелинейным звеном с насыщением 2°/сек.
3) АЦП - аналогово-цифровой преобразователь.
Преобразует аналоговый сигнал с ДУС в цифровой сигнал.
4) ЦАП - цифро-аналоговый преобразователь.
Преобразует цифровой сигнал с ЦВМ в аналоговый.
5) ШИМ - широтно-импульсный модулятор.
Предназначен для формирования скважности импульсов управления двигателем стабилизации, пропорциональной управляющему напряжению. В этом случае мы имеем среднее значение управляющего момента, пропорциональное управляющему сигналу.
Так как динамика ЦАП, АЦП, ШИМ как электронных аналоговых приборов оказывает на систему незначительное влияние по сравнению с динамикой механических (ДУС, двигатели) динамические звенья, описывающие эти элементы, можно заменить соответствующими коэффициентами усиления. В первом приближении значения коэффициентов не принципиально.
6) Двигатель стабилизации.
Двигатель описывается нелинейностью с насыщением 0,127 Нм и звеном запаздывания с Тд = 0,05 сек.
Тяга двигателя 0,1 Н
7) ЦВМ.
В ЦВМ формируется управление по углу и угловой скорости. Закон управления имеет вид:
e = K(K1j +K2j), К = 1, К1 = 550, К2 = 430.
Эти коэффициенты подбирались на модели, исходя из требований точности поддержания направления корректирующего импульса, а также длительности переходного процесса.
Система была промоделирована по каналу х. Для других каналов схемы моделирования будут аналогичными.
Для разомкнутой системы были построены ЛАЧХ и ФЧХ. Эти графики представлены на рис.43.
Результаты моделирования замкнутой системы представлены на рис.44-46.
Таким образом, в результате моделирования получено, что процесс стабилизации углового положения происходит примерно за 15 сек., статическая точность поддержания углового положения - 0,62 угл.мин., что полностью удовлетворяет требованиям технического задания.
3. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ
3.1. ОРГАНИЗАЦИЯ И ПЛАНИРОВАНИЕ ВЫПОЛНЕНИЯ ТЕМЫ
Сроки выполнения и затраты на исследования в большой мере зависят от организационных условий выполнения исследовательских работ Поэтому необходимо в первую очередь определить, хотя бы в общем виде, порядок и организацию проведения дипломной работы по заданной теме.
Организация дипломной работы по любой теме складывается из определённых этапов и подэтапов, каждый из которых хотя и может иметь разное содержание, однако структурно занимает равное положение для всех дипломных работ, выполняемых в данной отрасли.
Таким образом, структура дипломной работы может быть сформирована по типовой схеме, упорядоченной в соответствии с конкретным видом исследования. Состав дипломной работы по заданной теме, а также потребные категории исследований по этапам и подэтапам представлены в табл.1.
Этапы
Содержание
Исполнители
1.
Техническое задание
Постановка задачи. Определение состава программного продукта.
Руководитель Разработчик
2.
Эскизный проект
Разработка общего описания программного продукта.
Руководитель Разработчик
3.
Технический проект
Разработка структуры программного продукта.
Разработчик
4.
Рабочий проект
Программирования и отладка программы. Проверка результатов и внесение корректив в программу.
РуководительРазработчик
5.
Внедрение
Оформление необходимой документации.
Разработчик
3.2. ОПРЕДЕЛЕНИЕ ЗАТРАТ ТРУДА
Первым шагом при определении себестоимости программного комплекса является расчет трудоемкости создания и внедрения. Расчет производится по методике, приведенной в документе «Типовые нормы времени на программирование задач для ЭВМ». Типовые нормы времени предназначены для определения затрат времени на разработку программных средств вычислительной техники (ПСВТ).
Исходными данными для расчета трудоемкости, при разработке программы являются:
Количество разновидностей форм входной информации - 2,
в том числе:
информации, получаемой от решения смежных задач - 1,
справочной, условно постоянной информации (файл инициализации) - 1;
Количество разновидностей форм выходной информации - 2,
в том числе:
печатных документов (временные диаграммы) - 1,
информации, наносимой на магнитные носители (файл инициализации) - 1;
Степень новизны комплекса задач - Г (разработка программной продукции, основанной на привязке типовых проектных решений).
Сложность алгоритма - 3 (реализуются стандартные методы решения, не предусмотрено применение сложных численных и логических методов).
Вид используемой информации:
количество разновидностей форм переменной информации (ПИ) - 1, в том числе: информации, получаемой от решения смежных задач - 1;
количество разновидностей форм нормативно-справочной информации (НСИ) (файл инициализации) - 1;
Язык программирования - Borland С++.
Вид представления исходной информации - группа 11 (требуется учитывать взаимовлияние различных показателей).
Вид представления выходной информации - группа 22 (вывод информационных массивов на машинные носители).
Трудоемкость разработки программного продукта tпп может быть определена как сумма величин трудоемкостей выполнения отдельных стадий разработки программного продукта.
tпп = tтз + tэп + tтп + tрп + tв,
где tтз - трудоемкость разработки технического задания на создание программного продукта,
tэп - трудоемкость разработки эскизного проекта программного продукта,
tтп - трудоемкость разработки технического проекта программного продукта,
tрп - трудоемкость разработки рабочего проекта программного продукта,
tв - трудоемкость внедрения программного продукта.
Трудоемкость разработки технического задания рассчитывается по формуле
tтз = Тзрз + Тзрп,
где Тзрз - затраты времени разработчика постановки задач на разработку ТЗ, чел.-дни,
Тзрп - затраты времени разработчика программного обеспечения на разработку ТЗ, чел.-дни.
Значения Тзрз и Тзрп рассчитываются по формуле
Тзрз = tзКзрз, Тзрп = tзКзрп,
где tз - норма времени на разработку ТЗ для программного продукта в зависимости от функционального назначения и степени новизны разрабатываемового программного продукта, чел.-дни (tз = 29),
Кзрз - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задач на стадии ТЗ (Кзрз = 0,65),
Кзрп - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии ТЗ (Кзрп = 0,35).
Тзрз = 29*0,65 = 18,85 чел.-дней.
Тзрз = 29*0,35 = 10,15 чел.-дней.
tтз = Тзрз + Тзрп =18,85 + 10,15 = 29 чел.-дней.
Трудоемкость разработки эскизного проекта рассчитывается по формуле
tэп = Тэрз + Тэрп,
где Тэрз - затраты времени разработчика постановки задач на разработку ЭП, чел.-дни,
Тэрп - затраты времени разработчика программного обеспечения на разработку ЭП, чел.-дни.
Значения Тзрз и Тзрп рассчитываются по формуле
Тэрз = tэКэрз, Тэрп = tэКэрп,
где tэ - норма времени на разработку ЭП для программного продукта в зависимости от функционального назначения и степени новизны разрабатываемового программного продукта, чел.-дни (tэ = 41),
Кэрз - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком постановки задач на стадии ЭП (Кэрз = 0,7),
Кэрп - коэффициент, учитывающий удельный вес трудоемкости работ, выполняемых разработчиком программного обеспечения на стадии ЭП (Кэрп = 0,3).
Тзрз = 41*0,7 = 28,7 чел.-дней.
Тзрз = 41*0,3 = 12,3 чел.-дней.
tэп = Тзрз + Тзрп = 28,7 + 12,3 = 41 чел.-дней.
Трудоемкость разработки технического проекта зависит от функционального назначения программного продукта, количества разновидностей входной и выходной информации и определяется как сумма времени, затраченного разработчиком постановки задач и разработчиком программного обеспечения:
tтп = (tтрз + tтрп)КвКр,
где tпрз, tпрп - норма времени на разработку ТП разработчиком постановки задач и разработчиком программного обеспечения соответственно, чел.-дни (tтрз = 9, tтрп = 8),
Кв - коэффициент учета вида используемой информации,
Кр - коэффициент учета режима обработки информации (Кр = 1,1).
Значение коэффициента Кв определяется по формуле
Кв = (Кпnп + Кнсnнс + Кбnб)/(nп + nнс + nб),
где Кп, Кнс, Кб - значения коэффициентов учета вида используемой информации для переменной, нормативно-справочной информации и баз данных соответственно (Кп = 0,5, Кнс = 0,43, Кб = 1,25),
nп, nнс, nб - количество наборов данных переменной, нормативно-справочной информации и баз данных соответственно (nп = 1, nнс = 1, nб = 0).
Кв = (0,5 + 0,43)/2 = 0,465
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14