1.2.1 Устройство капиллярного вискозиметра. С этой целью нами был сконструирован капиллярный вискозиметр со щелевым зазором переменной толщины, схема которого показана на рис.1.
Рис.1. Схема капиллярного вискозиметра для исследования реологических свойств тонких прослоек жидкости
Щелевой зазор создавался между двумя плоско полированными стальными пластинами 1, которые с помощью микрометрического устройства 2 могли перемещаться и фиксироваться на заданном расстоянии. Полированные, обработанные по 14-му классу точности, стальные пластины закреплялись на латунных основаниях 3, в которых размещались установочные болты 4, позволявшие в случае необходимости устранять клиновидность щелевого зазора. Герметизация зазора осуществлялась боковыми и верхними резиновыми прокладками 5, покрытыми тонкой тефлоновой пленкой.
Рис.2.Схема создания перепада давлений в капиллярном вискозиметре
Для определения объема жидкости, протекающей через щелевой зазор, использовалась (рис.2) калиброванная измерительная трубка 1, высота столба жидкости в которой фиксировалась катетометром К с точностью 0,01 мм. Для создания перепада давлений вискозиметр через балластную трубку 2 подсоединялся к ресиверу 3 с манометрическим устройством 4. При измерении давлений P ~ 102 ¸ 104 Па использовался водяной, а для больших давлений (до 20 КП) – образцовый механический манометр. Для уменьшения объема пленки жидкости, остающейся за опускающимся мениском, диаметры измерительной трубки выбирались небольшими (~ 1 мм). Поверхности пластин, образующих зазор, и другие металлические детали, входящие в контакт с исследуемой жидкостью, перед сборкой вискозиметра для очистки от органических загрязнений промывались растворителем и просушивались.
После установки заданной величины зазора D он герметизировался. Изотермичность и малость градиентов температур (DT/l £50 K/м) контролировались системой термопар, а постоянство температуры (DТ £ 0,5 К) в рабочей ячейке обеспечивалось воздушным термостатом. Для устранения ошибки, связанной с возможным шунтированием потока жидкости, ее протечкой через неплотности резиновых прокладок, предварительно проводился контрольный опыт, при котором через вискозиметр прокачивался воздух и определялась объемная скорость его протекания. Рассчитанные в таких опытах значения вязкости воздуха сравнивались с табличными данными, и в дальнейших измерениях вводилась соответствующая поправка. При зазорах D ³ 50 мкм поправка не превышала нескольких процентов, а при меньших зазорах становилась значительной.
После заполнения вискозиметра исследуемой жидкостью в ресивере создавалось разрежение, и при различных фиксированных перепадах давлений DP в диапазоне DP = 102 ¸ 104 Па проводились измерения интервала времени t протекания через прибор заданного объема жидкости Q. Разброс отсчетов времени в пределах серии измерений был ~ 1%, однако, воспроизводимость последовательных серий достигала 10%, что связано, по-видимому, с возможным попаданием в зазор отдельных частиц твердых примесей. Расход жидкости в единицу времени определял экспериментальную объемную скорость течения qэ = Q/t (м3/с), где Q – объем протекшей через капиллярный зазор жидкости за время t, и среднюю (по сечению зазора S) линейную скорость <vэ> = qэ /S. Режимы течения во всех проведенных опытах были ламинарными (Re £ 1). «Объемная» вязкость исследовавшихся жидкостей измерялась стандартными вискозиметрами и сравнивалась с литературными данными.
1.2.2 Экспериментальные результаты. В работе авторами были проведены измерения вязкости тонких (D = 30 ¸ 50 мкм) прослоек индивидуальных органических жидкостей и углеводородных технических смесей, образованных между металлическими пластинами. В случае ламинарного потока средняя скорость <vп> течения ньютоновской жидкости через щелевой зазор толщиной D (рис.3) определяется формулой:
, (2.1)
где p=DP/l (Па/м) – градиент давления по длине зазора l, а m0 (Па·с) – величина коэффициента вязкости жидкости.
Существование на боковых поверхностях щелевого зазора пристенного слоя с иными реологическими характеристиками, чем объемная жидкость, было установлено в опытах с описанным вискозиметром при анализе характера возрастания скорости течения жидкости <vэ> с повышением перепада давления, и сравнением таких зависимостей с теоретическими, рассчитываемыми по (1). Для исследуемых жидкостей при зазорах заведомо больших чем 2ds, т.е. в отсутствие перекрытия пристенных слоев, в области малых перепадов давления наблюдается уменьшение вязкости с ростом давления и поэтому нелинейное возрастание скорости течения жидкости, а при давлениях (0.5 ¸ 1) 104 Па вязкость становится равной вязкости объемной жидкости.
Рис.3. Геометрия щелевого зазора вискозиметра и схема течения в нем жидкости с приповерхностным «жестким» слоем
Как пример авторы приведят результаты (рис.4) опытов с технической углеводородной жидкостью МРХ-30. Для тонких (D ~ 30 ¸ 40 мкм) прослоек этого масла при
Рис.4. Зависимость отношения <vэ> / p – относительной (по отношению к градиенту давления p) экспериментальной средней скорости течения масла МРХ-30 через щелевые зазоры вискозиметра от градиента давления p. Величина зазоров: D1 = 39,7 мкм (·), D2 = 35 мкм (О) и D3 = 30 мкм ( ). Т = 294 К. Сплошные линии – аппроксимация зависимостью (2)
небольшой скорости течения зависимость (1) не выполняется – величина <vэ> возрастает не пропорционально градиенту давления p. Экспериментальные результаты трех серий вискозиметрических опытов (при температуре Т = 294 К) с истечением этой жидкости через зазоры трех фиксированных толщин (D1 = 39,7 мкм, D2 = 35 мкм и D3 = 30 мкм) представлены на рис.4 в виде зависимости относительной (по отношению к градиенту давления p) скорости течения – величины (<vэ> /p, м2/Па×с) от p. Экспериментальные данные аппроксимированы (сплошная линия) функцией:
, (2)
где u¥, u0 и p¥ – параметры аппроксимирующей зависимости (приведены в табл.1).
Таблица.1
Параметры аппроксимации (2) экспериментальной зависимости относительной (по отношению к градиенту давления p) средней скорости <vэ> /p = f(p) течения масла МРХ-30 от градиента давления p в щелевых зазорах вискозиметра трех фиксированных толщин D. Т = 294 К.
Толщина зазора D, мкм |
Параметры аппроксимации |
||
u¥,×10–9, м2/Па×с |
u0 ×10–9, м2/Па×с |
p¥ ×105, Па/м |
|
39,7 |
13,4 |
4,41 |
1,81 |
35 |
10,4 |
3,74 |
2,02 |
31 |
8,3 |
3,24 |
4,04 |
Из рис.4 видно, что в области малых градиентов давления p < 0,5 МПа/м величина отношения <vэ>/p с увеличением давления растет и лишь при градиентах (p > 0,5 МПа/м) c повышением давления практически не изменяется. При этом экспериментальная скорость истечения жидкости <vэ> меньше расчетной <vп>, а при больших перепадах давления становится равной ей.
1.2.3 Обсуждение результатов и модель «жесткого, срезаемого» пристенного слоя.
Наблюдаемый характер зависимости <vэ>/p = f(p) объясняется существованием в прослойке пристенных слоев толщиной 2ds. Их наличие приводит к тому, что реальное проходное сечение зазора s, по которому протекает жидкость, меньше, чем геометрическое S=bD (рис.3). С ростом приложенного давления и соответственно скорости течения равновесная толщина слоя на каждой из подложек уменьшается и, начиная с какого–то значительного перепада давления, проходное сечение зазора совпадает с геометрическим.
Поэтому для расчета параметров слоя рассмотрим его простейшую реологическую модель: на поверхностях обеих пластин, ограничивающих зазор, существует неподвижный (гидродинамически «жесткий») слой, периферийная часть которого “срезается” течением (рис.3). При постепенном увеличении скорости течения (за счет повышения перепада давления DP) толщина пристенного слоя убывает вплоть до нуля.
В такой модели, в соответствии с (1), рассматриваемая величина отношения <vэ>/p может быть представлена в виде:
, (3)
что позволяет по полученным экспериментальным зависимостям <vэ>/p = f(p) рассчитать как начальную толщину слоя d0s (ее значение при p = 0), так и ее текущее значение – величину ds в функции градиента давления или возрастающей с ним скорости течения жидкости <vэ>.
Рассчитанные таким образом значения толщины ds «жесткого, срезаемого» слоя в зависимости от средней линейной скорости <vэ> течения жидкости в данном зазоре для каждой из трех серий экспериментов приведены на рис.5. В принятой модели пристенного слоя для количественного описания явления его «срезания» течением зависимость ds = f(<vэ>) аппроксимировалась функцией:
. (4)